幾種新型的高性能生物電放大器
生物電信號十分微弱,在檢測生物電信號的同時存在強(qiáng)大的干擾,因此,設(shè)計(jì)高質(zhì)量的生物電放大器有許多技術(shù)困難。
本文介紹了使用ADI公司生產(chǎn)的集成化儀用放大器和運(yùn)算放大器,設(shè)計(jì)了幾種新的結(jié)構(gòu)形式的高性能生物電前置放大器。
圖1 生物電前置放大器設(shè)計(jì)應(yīng)用一
圖2 生物電前置放大器設(shè)計(jì)應(yīng)用二
圖3 生物電前置放大器設(shè)計(jì)應(yīng)用三
幾種新型高性能生物電放大器
設(shè)計(jì)應(yīng)用一
該放大電路由四部分構(gòu)成:儀用放大器A5構(gòu)成的前級放大器,運(yùn)放A4構(gòu)成后級差分放大器,直流補(bǔ)償放大器A3以及A1、A2構(gòu)成右腿驅(qū)動電路,電路結(jié)構(gòu)如圖1所示。這個電路突出的優(yōu)點(diǎn)是引入了直流補(bǔ)償電
因?yàn)闃O化電壓最大可以達(dá)到300mV,所以在交流耦合中減少極化電壓的影響是必須的。在這個電路中,采用了直流補(bǔ)償放大器來抵消直流偏移量。以心電采集為例,如果左臂直流偏移量為+300mV,右臂為0V,那么,差動輸入電壓為300mV。假設(shè)前級儀用放大器增益為5,那么,儀用放大器輸出幅值會達(dá)到1.5V,如果后級放大倍數(shù)為50或者更高,輸出并不會出現(xiàn)達(dá)到75V從而飽和的情況。因?yàn)樵谶@個電路中,反饋回路提供了一個相等的反相電壓給參考點(diǎn),由于這種線性加和的影響,極化電壓被消除,輸出飽和的情況不會出現(xiàn)。
然而,絕大多數(shù)的集成化儀用放大器的共模抑制比與增益相關(guān):增益越高,共模抑制比越大。而集成化儀用放大器作為生物電前置放大器時,由于極化電壓的存在,前置放大器的增益只能在幾十倍以內(nèi),這就使得集成化儀用放大器作為前置放大器時的共模抑制比不可能達(dá)到最高。
對于該電路,選擇器件時要注意:作為前級放大器的儀用放大器在低增益時要求有較高的共模抑制比,由于其后有直流補(bǔ)償電路以及該級放大倍數(shù)很小,所以,對儀用放大器輸入失調(diào)電壓要求不是太高。對于正負(fù)電源供電的系統(tǒng),可以選用ADI公司的儀用放大器AD620。它具有以下特性:增益可調(diào)(1~1000);供電范圍寬(2.3V~18V);輸入失調(diào)電壓最大為50V;輸入偏置電流最大為1nA;增益較低時具有較大的共模抑制比(G=10時,共模抑制比最小為100dB)等,滿足設(shè)計(jì)要求。對于后級差分放大器運(yùn)放A4來說,放大倍數(shù)主要在這一級實(shí)現(xiàn),所以要求運(yùn)放有很低的輸入失調(diào)電壓??梢赃x用ADI公司的OP747(四運(yùn)放)、OP2177(雙運(yùn)放),均具有微伏量級的失調(diào)電壓和良好的性能。
設(shè)計(jì)應(yīng)用二
該電路由四部分構(gòu)成:并聯(lián)型雙運(yùn)放構(gòu)成的前級放大器,阻容耦合電路,由集成儀用放大器構(gòu)成的后級放大器和共模信號取樣驅(qū)動電路,電路設(shè)計(jì)如圖2所示。
并聯(lián)型雙運(yùn)放的優(yōu)點(diǎn)是不需精密的匹配電阻,理論上它的共模抑制比為無窮大,且與其外圍電阻的匹配程度無關(guān)。但是并聯(lián)型雙運(yùn)放的輸出為雙端差動輸出信號,如果僅用單端輸出信號時將不再具有這一優(yōu)點(diǎn)。所以本電路在后級使用集成儀用放大器A5,將雙端差動輸出信號轉(zhuǎn)換為常用的單端輸出信號。集成儀用放大器具有較優(yōu)良的性能,但由于其共模抑制比正比于差模增益,而同時器件存在較高的失調(diào)電壓且通常信號源中存在較大的直流偏移電壓(如檢測生理電信號時的極化電壓和傳感器中的零點(diǎn)偏移電壓),在直接應(yīng)用集成儀用放大器作為前置放大器時并不能取得最高的共模抑制比性能。于是本電路在后級使用集成儀用放大器,并采用阻容耦合電路隔離直流信號,因而可使得集成儀用放大器取得較高的差模增益,從而得到很高的共模抑制比性能。共模取樣驅(qū)動電路由兩個等值電阻R4 、R5和一只由運(yùn)算放大器A3組成的跟隨器構(gòu)成。A3的輸入信號取自A1和A2輸出端兩個串聯(lián)電阻的中點(diǎn)電壓Vc,即當(dāng)只有差模信號的輸出V01=V02時,有VC=0,則運(yùn)放A3的輸出電壓為0,等同于接地;而當(dāng)兼有共模電壓和差模信號輸入時,A3的總輸出只包含輸入信號的共模部分VC=1/2(Vi1+Vi2)。從而使得共模信號不經(jīng)阻容耦合電路的分壓直接加在集成放大器的輸入端,避免了由于阻容耦合電路的不匹配而降低電路整體的共模抑制比。 經(jīng)過實(shí)際測量,圖2所示的電路采用圖中所給出的參數(shù)時,電路的共模抑制比在120dB以上。使用這個電路選擇器件時要注意:作為后級放大器的儀用放大器的輸入失調(diào)電壓要盡可能小,因?yàn)楹蠹壋袚?dān)著主要的放大作用??梢赃x用ADI公司的AD620,輸入失調(diào)電壓最大為50V。
設(shè)計(jì)應(yīng)用三
該電路由四部分構(gòu)成:高通網(wǎng)絡(luò),并聯(lián)型雙運(yùn)放放大器,帶有積分反饋電路的高通差分放大器和共模信號取樣驅(qū)動電路,電路設(shè)計(jì)如圖3所示。這個放大電路有兩個不同于以往其它生物前置放大器的特點(diǎn):1. 高通網(wǎng)絡(luò)放在了放大電路的前端;2. 放大電路的放大倍數(shù)都做在前級放大即并聯(lián)型雙運(yùn)放上。
在這個放大器設(shè)計(jì)中,信號輸
對于一個多級放大系統(tǒng)來說,將前級的放大倍數(shù)盡可能作大,有利于降低后面各級放大器的噪聲,從而使整個系統(tǒng)的噪聲降低。但是由于極化電壓以及運(yùn)放本身輸入失調(diào)電壓的影響,前級增益不可能太大。高通網(wǎng)絡(luò)比較好地解決了直流輸入電壓(極化電壓)的問題,但是,運(yùn)放本身的輸入失調(diào)電壓被放大后,仍然會明顯地影響輸出的動態(tài)范圍。比如1mV的輸入失調(diào)電壓,放大1000倍后,放大器輸出將會達(dá)到1V。高通網(wǎng)絡(luò)中的電阻電容也會給系統(tǒng)帶來噪聲影響,這也是以往的生物電前置放大器設(shè)計(jì)中不將隔直電容放在系統(tǒng)前端的原因之一。該電路中采用高通差分放大器解決這個問題。在后級差分放大器的反饋回路中,加入了一個積分器,其對交流信號沒有作用,只對直流和極低頻信號積分,抵消其影響。右腿驅(qū)動電路通過一個跟隨器接入電路,可以避免右腿信號對電路穩(wěn)定性的影響,抑制工頻干擾。
經(jīng)過實(shí)際測量,圖3所示的電路采用圖中所給出的參數(shù)時,考慮到電阻電容匹配問題,該電路的共模抑制比可以達(dá)到123dB。設(shè)計(jì)應(yīng)用三中,雖然放大倍數(shù)都做在前級并聯(lián)型的雙運(yùn)放上,但是前有高通網(wǎng)絡(luò),后有積分反饋電路,因此對雙運(yùn)放要求不高。作為后級差分放大的運(yùn)放,因?yàn)椴蛔龇糯蟊稊?shù),所以也不用特意要求較低的失調(diào)電壓。在本電路中要盡可能使電阻電容匹配,使系統(tǒng)性能達(dá)到最佳。
幾種生物電前置放大器的比較
集成化儀用放大器的共模抑制比與增益相關(guān)。增益越高,共模抑制比越大。而集成化儀用放大器作為生物電前置放大器時,由于極化電壓的存在,前置放大器的增益只能在幾十倍以內(nèi),這就使得集成化儀用放大器作為前置放大器時的共模抑制比不可能達(dá)到最高。
結(jié)合共模驅(qū)動技術(shù)的阻容耦合電路和積分反饋電路,無論放在電路前端或中間,目的都是為了去除經(jīng)過放大后對生物信號造成影響的極化電壓和器件中較高的失調(diào)電壓。
在設(shè)計(jì)應(yīng)用一中,前級放大器由儀用放大器構(gòu)成,增益較低,為了達(dá)到較高的共模抑制比,就要求儀用放大器在較低增益時有高共模抑制比。經(jīng)前級放大信號中的直流成分(包括極化電壓以及儀用放大器的輸入失調(diào)電壓)由直流補(bǔ)償電路消除。后級放大器承擔(dān)著主要的放大任務(wù),因此對運(yùn)放輸入失調(diào)電壓有著較高的要求,不能過大,以免高增益放大后,影響輸出信號。
在設(shè)計(jì)應(yīng)用二中,并聯(lián)型雙運(yùn)放放大器作為前級放大器,增益較低。它不需精密的匹配電阻,理論上它的共模抑制比為無窮大,且與其外圍電阻的匹配程度無關(guān)。經(jīng)前級放大后的信號經(jīng)過共模取樣驅(qū)動電路去除直流分量。儀用放大器作為后級放大器,承擔(dān)著主要的放大任務(wù),由于其共模抑制比正比于差模增益,因此可以達(dá)到極高的共模抑制比,但同樣要求儀用放大器輸入失調(diào)電壓不能過大,否則高增益放大后會影響信號輸出。 在
結(jié)語
本文對幾種高性能、低成本的生物電前置放大器進(jìn)行了分析比較,它們巧妙地利用了儀用放大器的共模抑制比與增益的關(guān)系,結(jié)合阻容耦合電路、積分反饋電路和共模驅(qū)動技術(shù)實(shí)現(xiàn)了放大器的高性能,適合于生物電信號的檢測應(yīng)用。
評論