提高電源可靠性的應(yīng)用電路
電源模塊以高集成度、高可靠性、簡化設(shè)計(jì)等多重優(yōu)勢,受到許多工程師的青睞,但即便使用相同的模塊,不同的用法也會導(dǎo)致系統(tǒng)的可靠性大相徑庭。使用不當(dāng),非但不能發(fā)揮模塊的優(yōu)勢,還可能降低系統(tǒng)可靠性。
本文引用地址:http://m.butianyuan.cn/article/201604/290141.htm
1.兩級浪涌防護(hù)電路,使用不當(dāng)適得其反
電源模塊體積小,在EMC要求比較高的場合,需要增加額外的浪涌防護(hù)電路,以提升系統(tǒng)EMC性能。如圖1所示,為提高輸入級的浪涌防護(hù)能力,在外圍增加了壓敏電阻和TVS管。但圖中的電路(a)、(b)原目的是想實(shí)現(xiàn)兩級防護(hù),但可能適得其反。如果(a)中MOV2的壓敏電壓和通流能力比MOV1低,在強(qiáng)干擾場合,MOV2可能無法承受浪涌沖擊而提前損壞,導(dǎo)致整個系統(tǒng)癱瘓。同樣的,電路(b),由于TVS響應(yīng)速度比MOV快,往往是MOV未起作用,而TVS過早損壞。
圖1 兩級浪涌防護(hù)
增加一個電感,構(gòu)成兩級防護(hù)電路。如電路(c)、(d)所示,串入一個電感,將防護(hù)器件分隔成兩級,對高頻浪涌脈沖,電感具有較大的阻抗,因此首先起作用的是前端的壓敏電阻,而后端的壓敏和TVS能夠進(jìn)一步吸收殘壓保護(hù)模塊。另外,即使是單級防護(hù),增加電感也能起到一定的作用,避免浪涌電壓直接加到模塊輸入端。
2.輸出濾波電容過大,導(dǎo)致模塊異常
電源模塊輸出端通常推薦增加一定的濾波電容,但在使用過程中,由于認(rèn)識不足等原因,使用了過大的輸出濾波電容,既增加了成本又降低了系統(tǒng)的穩(wěn)定性。
圖2 容性負(fù)載過大
如圖2中的電路(a)所示,一個3W的模塊,輸出使用了2000uF的電容,而通過查閱產(chǎn)品手冊了解到,模塊建議最大輸出電容為800uF。輸出電容過大可能導(dǎo)致啟動不良,而對于不帶短路保護(hù)的微功率DC-DC模塊,輸出電容過大甚至可能導(dǎo)致模塊永久損壞。
3.接開關(guān)電源芯片,注意啟動不良
如圖3所示,電源模塊的輸出電壓是逐漸建立的,電路(a)的LM2576沒有設(shè)計(jì)欠壓鎖定,在VIN電壓較低時即開始啟動,若OUT負(fù)載過重,可能被24V模塊誤判為短路或容性負(fù)載過大,從而導(dǎo)致啟動不良。
圖3 增加欠壓鎖定
因此推薦使用電路(b),外置簡單的欠壓鎖定,使24V模塊輸出電壓建立到預(yù)置值后再啟動LM2576等外接開關(guān)電源芯片,可以很大程度上避免啟動不良問題。
或者可以使用功率余量更大的電源模塊, ON/OFF引腳也可以連接到MCU進(jìn)行控制。
4.雙路模塊,注意負(fù)載平衡
對于雙路輸出模塊,兩路輸出對負(fù)載的要求不同,這類模塊通常只對其中一路進(jìn)行穩(wěn)壓反饋,另一路通過變壓器耦合達(dá)到所需的電壓。
當(dāng)穩(wěn)壓主路負(fù)載過重輔路過輕時,輔路電壓會飄高較多,此時輔路對電壓要求嚴(yán)格時,需增加三端穩(wěn)壓器。而當(dāng)非穩(wěn)壓輔路負(fù)載過重主路過輕時,可能出現(xiàn)輸出電壓不穩(wěn)定或者輔路電壓過低的情況,此時需給主路增加假負(fù)載。
致遠(yuǎn)電子的部分模塊是主輔路均穩(wěn)壓的,例如ZY0GD1212DI3-15W就是雙12V雙穩(wěn)壓輸出產(chǎn)品。
5.并聯(lián)與冗余,不是一回事
當(dāng)手頭有兩個相同的模塊,而單個的功率不足時,很自然的想到兩個模塊并聯(lián)使用,以滿足功率要求,但將普通電源模塊并聯(lián)使用提升功率的方法存在極大隱患,輸出電壓偏高的模塊需提供過大的電流而導(dǎo)致模塊過功率。
圖4 冗余應(yīng)用
如上圖電路(a)所示,負(fù)載需5W功率,超出單個模塊的帶載能力,則其中一個模塊可能存在超負(fù)荷使用的情況。對于此種應(yīng)用,需使用單個大于5W功率的模塊,比如ZY0JGB12P-10W。而電路(b)則不然,每個模塊的功率均能滿足負(fù)載的需要,此時屬于冗余設(shè)計(jì)。
6.鉭電容雖好,放在電源輸入輸出需謹(jǐn)慎
鉭二氧化錳電容比較容易擊穿短路,抗浪涌能力差,開機(jī)時或外部供電接入時,很可能形成較大的浪涌電流或電壓,造成鉭電容的燒毀短路或過壓擊穿,在未做嚴(yán)格評估的情況下,建議使用陶瓷電容或電解電容。
評論