開關電源設計秘訣
為您的電源選擇最佳的工作頻率是一個復雜的權衡過程,其中包括尺寸、效率以及成本。通常來說,低頻率設計往往是最為高效的,但是其尺寸最大且成本也最高。雖然調高頻率可以縮小尺寸并降低成本,但會增加電路損耗。接下來,我們使用一款簡單的降壓電源來描述這些權衡過程。
本文引用地址:http://m.butianyuan.cn/article/201612/327683.htm我們以濾波器組件作為開始。這些組件占據(jù)了電源體積的大部分,同時濾波器的尺寸同工作頻率成反比關系。另一方面,每一次開關轉換都會伴有能量損耗;工作頻率越高,開關損耗就越高,同時效率也就越低。其次,較高的頻率運行通常意味著可以使用較小的組件值。因此,更高頻率運行能夠帶來極大的成本節(jié)約。
圖1.1顯示的是降壓電源頻率與體積的關系。頻率為100kHz時,電感占據(jù)了電源體積的大部分(深藍色區(qū)域)。如果我們假設電感體積與其能量相關,那么其體積縮小將與頻率成正比例關系。由于某種頻率下電感的磁芯損耗會極大增高并限制尺寸的進一步縮小,因此在此情況下上述假設就不容樂觀了。如果該設計使用陶瓷電容,那么輸出電容體積(褐色區(qū)域)便會隨頻率縮小,即所需電容降低。另一方面,之所以通常會選用輸入電容,是因為其具有紋波電流額定值。該額定值不會隨頻率而明顯變化,因此其體積(黃色區(qū)域)往往可以保持恒定。另外,電源的半導體部分不會隨頻率而變化。這樣,由于低頻開關,無源器件會占據(jù)電源體積的大部分。當我們轉到高工作頻率時,半導體(即半導體體積,淡藍色區(qū)域)開始占據(jù)較大的空間比例。
圖1.1電源組件體積主要由半導體占據(jù)
該曲線圖顯示半導體體積本質上并未隨頻率而變化,而這一關系可能過于簡單化。與半導體相關的損耗主要有兩類:傳導損耗和開關損耗。同步降壓轉換器中的傳導損耗與MOSFET的裸片面積成反比關系。MOSFET面積越大,其電阻和傳導損耗就越低。
開關損耗與MOSFET開關的速度以及MOSFET具有多少輸入和輸出電容有關。這些都與器件尺寸的大小相關。大體積器件具有較慢的開關速度以及更多的電容。圖1.2顯示了兩種不同工作頻率(F)的關系。傳導損耗(Pcon)與工作頻率無關,而開關損耗(PswF1和PswF2)與工作頻率成正比例關系。因此更高的工作頻率(PswF2)會產(chǎn)生更高的開關損耗。當開關損耗和傳導損耗相等時,每種工作頻率的總損耗最低。另外,隨著工作頻率提高,總損耗將更高。
圖1.2提高工作頻率會導致更高的總體損耗
但是,在更高的工作頻率下,最佳裸片面積較小,從而帶來成本節(jié)約。實際上,在低頻率下,通過調整裸片面積來最小化損耗會帶來極高成本的設計。但是,轉到更高工作頻率后,我們就可以優(yōu)化裸片面積來降低損耗,從而縮小電源的半導體體積。這樣做的缺點是,如果我們不改進半導體技術,那么電源效率將會降低。
如前所述,更高的工作頻率可縮小電感體積;所需的內層芯板會減少。更高頻率還可降低對于輸出電容的要求。有了陶瓷電容,我們就可以使用更低的電容值或更少的電容。這有助于縮小半導體裸片面積,進而降低成本。
評論