物聯(lián)網(wǎng)安全存威脅 人工智能可否成定心法寶
目前網(wǎng)絡(luò)安全已經(jīng)進(jìn)入了一個嶄新的時代,面向各種新戰(zhàn)場,需要新的架構(gòu)、新的方法、新的編程語言來支撐我們應(yīng)對越來越艱巨的戰(zhàn)斗。新戰(zhàn)場以黑產(chǎn)對抗、反勒索軟件、反Insider-based APT、物聯(lián)網(wǎng)/車聯(lián)網(wǎng)這些新方向?yàn)榇?。比如很多攝像頭、智能門鎖、兒童手表,都是成批次的被攻破,車聯(lián)網(wǎng)與智能車的安全問題也引起業(yè)界的嚴(yán)重關(guān)注和顧慮。
本文引用地址:http://m.butianyuan.cn/article/201708/362795.htm網(wǎng)絡(luò)安全面臨嚴(yán)峻考驗(yàn)
“2016年全球互聯(lián)網(wǎng)用戶達(dá)到35億人,約占世界總?cè)丝诘囊话?。?020年,接入互聯(lián)網(wǎng)的終端設(shè)備預(yù)計將達(dá)到120億臺?!边@是來自國際電信聯(lián)盟于2017年7月發(fā)布的《全球網(wǎng)絡(luò)安全指數(shù)》中的數(shù)據(jù)。
而隨著智能設(shè)備的廣泛應(yīng)用,大規(guī)模普及的物聯(lián)網(wǎng)必將為攻擊者提供大量新機(jī)會,工作與生活的界限愈加模糊,一臺聯(lián)網(wǎng)設(shè)備,只要被攻陷,從銀行等財務(wù)信息到健康等個人信息,則可能全部泄露。而在互聯(lián)時代,只要攻克一臺設(shè)備,其他設(shè)備就可能瞬間被瓦解。
這樣的事情已有先例。2016年10月,一款名為Mirai的惡意軟件侵襲了大量存在漏洞的智能攝像頭、智能網(wǎng)關(guān)、智能家電等物聯(lián)網(wǎng)設(shè)備,被感染后的它們瞬間變成了網(wǎng)絡(luò)中的“肉雞”設(shè)備。在工控領(lǐng)域,2010年的Stuxnet蠕蟲病毒能夠針對西門子的監(jiān)控與數(shù)據(jù)采集(SCADA)系統(tǒng)進(jìn)行攻擊,并通過U盤和局域網(wǎng)進(jìn)行傳播。
萬物互聯(lián),內(nèi)網(wǎng)和外網(wǎng)的邊界逐漸模糊,網(wǎng)絡(luò)泛化則成為大趨勢,比如特斯拉的汽車在各種場合都可以接入wifi,還可以接入3G/4G網(wǎng)絡(luò),而在未來的交通中,無人駕駛車還將與交通燈、交通臺,甚至是和其他車互通互聯(lián)——這意味著更多的潛在攻擊點(diǎn)。
“一旦入網(wǎng),有很多傳統(tǒng)的攻擊手段就能像攻擊電腦一樣攻擊無人駕駛車,WannaCry病毒同樣可以入侵車,這造成的問題將會更大?!钡聡诙骰舴驊?yīng)用集成信息安全研究所認(rèn)知信息安全研究組組長肖煌在接受機(jī)器之能的采訪時說。
這表明,無論是現(xiàn)在,還是將來,網(wǎng)絡(luò)安全將面臨著嚴(yán)峻的考驗(yàn)。隨著人工智能被應(yīng)用于各個垂直領(lǐng)域,網(wǎng)絡(luò)安全面臨的新的挑戰(zhàn),也為人工智能的大展身手帶來了重要的契機(jī)。
在這個新興領(lǐng)域,巨頭已經(jīng)出現(xiàn)。用人工智能預(yù)測網(wǎng)絡(luò)攻擊的Cylance公司是估值10億美元以上的獨(dú)角獸,其人工智能反病毒軟件“Cylance PROTECT”可以預(yù)測威脅的發(fā)生。該公司曾在去年演示了一項(xiàng)技術(shù),在沒有網(wǎng)絡(luò)連接的情況下,僅需60 MB內(nèi)存和1%的CPU就能保護(hù)計算機(jī)免受攻擊。
人工智能于網(wǎng)絡(luò)安全:異常檢測和提升效率
在網(wǎng)絡(luò)安全領(lǐng)域,對威脅的識別,并非一蹴而就,而是漸進(jìn)發(fā)展的過程。亞信網(wǎng)絡(luò)安全產(chǎn)業(yè)技術(shù)研究院副院長童寧在7月初舉辦的C3安全峰會上介紹,安全廠商起初通過黑白名單技術(shù),將目標(biāo)進(jìn)行好/壞定性,用這樣的一維特征來識別威脅。隨后是匹配字符串這樣的二維特征,如果請求里包含某一類型的數(shù)據(jù),就會被認(rèn)定為非法。在這之后是多維特征,要辨別一個程序是好是壞,先讓它運(yùn)行,再監(jiān)督它的運(yùn)行過程,將運(yùn)行過程中的信息形成多維特征,用于判斷。但多維特征技術(shù)的致命缺點(diǎn)就是開銷太大,效率低下,因此無法達(dá)到客戶要求。
在2000年以后,隨著移動互聯(lián)網(wǎng)的發(fā)展,有大量設(shè)備產(chǎn)生各式各樣的日志,因此在日志管理和分析方面,有了長足的發(fā)展。而包括關(guān)聯(lián)分析等機(jī)器學(xué)習(xí)算法也被大量使用。
在機(jī)器學(xué)習(xí)中,童寧表示,監(jiān)督學(xué)習(xí)則是一個高效的多維度特征發(fā)現(xiàn)方法,適用于惡意程序、勒索病毒以及垃圾郵件的防治。但監(jiān)督學(xué)習(xí)也面臨著挑戰(zhàn):一,模型的新鮮度,因?yàn)橥{每天都在變化,而監(jiān)督學(xué)習(xí)并不是每天都在學(xué)習(xí),如果不每天學(xué)習(xí),最新的威脅就識別不出來。二,模型的準(zhǔn)確率,學(xué)習(xí)是一回事,但真正使用時的精度又是另一回事。三,模型的召回率,也就是說漏掉了多少威脅,有多少威脅沒有抓住。
因此,監(jiān)督學(xué)習(xí)并不是萬能的,比如反欺詐、態(tài)勢感知、用戶行為分析則更適合無監(jiān)督學(xué)習(xí)。然而,無監(jiān)督學(xué)習(xí)也面臨著另外的挑戰(zhàn),因?yàn)闊o監(jiān)督學(xué)習(xí)一般是在客戶的網(wǎng)絡(luò)環(huán)境中進(jìn)行,因而很有可能面臨投毒攻擊。
“機(jī)器學(xué)習(xí)技術(shù)的優(yōu)勢是它的多維識別能力,然而機(jī)器學(xué)習(xí)技術(shù)再強(qiáng)大也需要與其他手段綜合起來利用,效果才更好。”童寧說。
肖煌同樣指出,將機(jī)器學(xué)習(xí)用于網(wǎng)絡(luò)安全,在很多場景,預(yù)測精度并不能達(dá)到他們要求的0.000001的誤報標(biāo)準(zhǔn)。從這個角度來說,人工智能也只是輔助手段,還需要與傳統(tǒng)手段結(jié)合。
然而,肖煌認(rèn)為,將人工智能用于網(wǎng)絡(luò)安全則有另外的優(yōu)勢,那就是提高分析效率。人工智能的典型作用是代替人類做大量重復(fù)的勞動,比如用人工智能分析影像圖片,將影像醫(yī)生從低效率的重復(fù)勞動中解放了出來。
網(wǎng)絡(luò)安全行業(yè),也同樣如此。
數(shù)據(jù)顯示,中國目前對網(wǎng)絡(luò)安全人才的總需求量超過70萬,每年增加的人才卻不過兩三萬,缺口高達(dá)95%。而且,一個分析師每天能分析的漏洞卻是非常有限的。
“如果不通過自動化的手段,將來物聯(lián)網(wǎng)連接設(shè)備數(shù)爆發(fā)的時候,大量的信息安全隱患只依賴人來分析是不太可能的?!毙せ捅硎?,一個信息安全分析師每天最多能看一兩千條log數(shù)據(jù),或者一兩百個代碼片,而對人工智能來說,幾百萬條數(shù)據(jù),只需花費(fèi)幾分鐘時間。
根據(jù)肖煌的觀察,信息安全和人工智能,領(lǐng)域不同,思維方式也有一定區(qū)別,前者更偏向于系統(tǒng)工程,后者則更偏向于數(shù)學(xué)思維。因此,肖煌的很多同事認(rèn)為人工智能解決的問題有限,更愿意使用傳統(tǒng)的方法,但也會朝著分析自動化的方向思考。
“我相信任何一個做信息安全的人必然要向這個方向靠攏?!毙せ拖M苡泌呌诔墒斓淖詣踊侄瓮瓿纱怪鳖I(lǐng)域的性能提升,包括分析的效率、時效性、規(guī)模和可解釋性。
人工智能時代的攻與防
網(wǎng)絡(luò)安全是道高一尺魔高一丈的世界。安全人員使用人工智能技術(shù)阻擋黑客攻擊,反過來這也會使黑客使用人工智能技術(shù)發(fā)起更復(fù)雜的攻擊。而隨著大量人工智能模型開源,黑客入侵的工具也愈發(fā)多樣化。
肖煌表示,只要稍加學(xué)習(xí),黑客就可以利用開源工具欺騙識別系統(tǒng),而技術(shù)難度的降低會促使很多人成為黑客,或者是進(jìn)行一些此前做不到的攻擊。
這并非杞人憂天。
在網(wǎng)絡(luò)釣魚電子郵件中已有這樣的案例,黑客通過模仿人類的說話習(xí)慣和內(nèi)容,使得企業(yè)或個人被入侵時更加難以識別。
肖煌認(rèn)為,以后的病毒變種會越來越多,檢測越來越難,規(guī)模越來越大,生成的時間越來越短。
疊加在典型圖片輸入上的對抗輸入會讓分類器產(chǎn)生錯覺,誤將熊貓識別為長臂猿
2017年2月,OpenAI在發(fā)表的最新研究中,指出人工智能安全領(lǐng)域的另一大隱憂:對抗樣本。在圖像識別問題中,攻擊者將對抗樣本輸入機(jī)器學(xué)習(xí)模型,讓機(jī)器在視覺上產(chǎn)生幻覺,從而讓系統(tǒng)產(chǎn)生誤判。而在論文《解釋并馴服對抗樣本》(Explaining and Harnessing Adversarial Examples)中有一個例子:一張熊貓圖片,被加入人為設(shè)計的微小噪聲后,就導(dǎo)致系統(tǒng)將熊貓識別為長臂猿。
多年來,肖煌一直在研究對抗性機(jī)器學(xué)習(xí),致力于攻克機(jī)器學(xué)習(xí)算法本身的缺陷。他分析道,依賴于數(shù)據(jù)的機(jī)器學(xué)習(xí)算法、深度學(xué)習(xí)算法本身存在很大的缺陷。對抗性生成網(wǎng)絡(luò),則利用這種缺陷,設(shè)計新的架構(gòu)去生成模型。
“因?yàn)槟壳暗臋C(jī)器學(xué)習(xí)嚴(yán)重依賴于數(shù)據(jù)的分布,如果數(shù)據(jù)分布本身很復(fù)雜,或者是人為地把它變得復(fù)雜,黑客如果有手段去生成惡意的樣本,就會導(dǎo)致識別不出來,或者識別錯誤?!毙せ瓦M(jìn)一步解釋。
肖煌表示,如果干擾被用在無人駕駛領(lǐng)域,后果則不堪設(shè)想。比如,在無人駕駛測試路段德國A9高速公路上,有專門的標(biāo)識引導(dǎo)無人駕駛車。如果路邊的標(biāo)識被惡意修改,誤導(dǎo)依賴標(biāo)識的無人駕駛車,則會造成極度危險的情況。
肖煌認(rèn)為,因?yàn)樗惴ū旧淼娜毕荩诖笠?guī)模使用人工智能之后,網(wǎng)絡(luò)安全則需要更換思路,設(shè)計新的方法。
對此,他提供了以下路徑。
一,增加分析端的可解釋性。肖煌分析,如果是病毒威脅入侵,用機(jī)器學(xué)習(xí)檢測的方法,很難解決,因此希望能在信息安全泄露事故時,用統(tǒng)計學(xué)的方法理解其中的關(guān)聯(lián),黑客如何入侵系統(tǒng),攻擊的路徑是什么,又是哪個環(huán)節(jié)出現(xiàn)了問題,找出這些關(guān)聯(lián),或者從因果關(guān)系圖譜角度進(jìn)行分析,從而增加分析端的可解釋性。
二,目前的機(jī)器學(xué)習(xí)算法模型太復(fù)雜,需要使用大量的數(shù)據(jù),就存在Tradeoff(權(quán)衡取舍)的情況。肖煌認(rèn)為,降低算法復(fù)雜度的方法有很多,比如,引入先驗(yàn)的知識,引導(dǎo)模型往一個方向?qū)W習(xí)。這樣學(xué)習(xí)的模型復(fù)雜度會降低,需要的數(shù)據(jù)也比較少。
三,信息安全情報的共享也非常重要。比如,模型存在某個缺陷,把這個缺陷提取出來,用一種高效的手段,編譯到另一種模型中去,另外的模型則無此缺陷。肖煌認(rèn)為,這類似遷移學(xué)習(xí)(Transfer learning),只是遷移學(xué)習(xí)是遷移中間的學(xué)習(xí)結(jié)果,實(shí)際上中間學(xué)習(xí)出來的異常也可以遷移,從而增加算法的安全性。
評論