新聞中心

EEPW首頁 > 模擬技術 > 設計應用 > 令人困擾的DAC輸出毛刺消滅記

令人困擾的DAC輸出毛刺消滅記

作者: 時間:2017-09-01 來源:網絡 收藏

  在基礎知識:靜態(tài)技術規(guī)格中,我們探討了靜態(tài)技術規(guī)格以及它們對DC的偏移、增益和線性等特性的影響。這些特性在平衡雙電阻 (R-2R) 和電阻串數(shù)模轉換器 () 的各種拓撲結構間是基本一致的。然而,R-2R和電阻串的短時毛刺方面的表現(xiàn)卻有著顯著的不同。

本文引用地址:http://m.butianyuan.cn/article/201709/363793.htm

  我們可以在DAC以工作采樣率運行時觀察到其動態(tài)不是線性。造成動態(tài)非線性的原因很多,但是影響最大的是短時毛刺、轉換率/穩(wěn)定時間和采樣抖動。

  用戶可以在DAC以穩(wěn)定采樣率在其輸出范圍內運行時觀察短時毛刺。圖1顯示的是一個16位R-2R DAC,DAC8881上的此類現(xiàn)象。

   

  圖1

  這個16位DAC (R-2R) 輸出顯示了7FFFh – 8000h代碼變化時的短時毛刺脈沖干擾的特性。

  到底發(fā)生了什么?

  在理想情況下,DAC的輸出按照預期的方向從一個電壓值移動到下一個電壓值。但實際情況中,DAC電路在某些代碼到代碼轉換的過程中具有下沖或過沖特性。

  這一特性在每一次代碼到代碼轉換時都不一致。某些轉換中產生的下沖或過沖特性會比其它轉換更加明顯。而短時毛刺脈沖干擾技術規(guī)格量化的就是這些特性。DAC短時毛刺脈沖干擾會瞬時輸出錯誤電壓來干擾閉環(huán)系統(tǒng)。

  圖2顯示的是具有單突短時毛刺脈沖干擾的DAC的示例。一個電阻串DAC產生的通常就是這種類型的短時毛刺脈沖干擾。

   

  圖2

  單突DAC輸出短時毛刺脈沖干擾特性。

  在圖2中,代碼轉換的位置是從7FFFh到8000h。如果你將這些數(shù)變換為二進制形式,需要注意的是這兩個十六進制代碼的每個位或者從1變換為0,或者從0變換為1。

  短時毛刺脈沖干擾技術規(guī)格量化了這個毛刺脈沖現(xiàn)象所具有的能量,能量單位為納伏秒,即nV-sec (GI)。這個短時毛刺脈沖干擾的數(shù)量等于曲線下面積的大小。

  單突短時毛刺脈沖干擾是由DAC內部開關的不同步造成的。那是什么引起了這一DAC現(xiàn)象呢?原因就是內部DAC開關的同步不總是那么精確。由于集成開關電容充電或放電,你能在DAC的輸出上看到這些電荷交換。

  R-2R DAC產生兩個區(qū)域的短時毛刺脈沖干擾錯誤(圖3)。由于出現(xiàn)了雙脈沖誤差,從負短時毛刺脈沖干擾 (G1) 中減去正短時毛刺脈沖干擾 (G2) 來產生最終的短時毛刺脈沖干擾技術規(guī)格。

   

  圖3

  具有R-2R內部結構的DAC表現(xiàn)出雙突短時毛刺脈沖干擾

  圖3中的代碼轉換仍然是從7FFFh至8000h。

  為了理解DAC短時毛刺脈沖干擾的源頭,我們必須首先定義主進位轉換。在主進位轉換點上,最高有效位 (MSB)從低變高時, 較低的位從高變?yōu)榈停粗嗳?。其中一個此類代碼變換示例就是0111b變?yōu)?000b,或者是從1000 000b變?yōu)?111 1111b的更加明顯的變化。

  有些人也許會認為這一現(xiàn)象在DAC的輸出表現(xiàn)出巨大的電壓變化時出現(xiàn)。實際上,這并不是每個DAC編碼機制都會出現(xiàn)的情況。更多細節(jié)請見參考文獻1。

  圖4和圖5顯示了這種類型的毛刺脈沖對一個8位DAC的影響。對于DAC用戶來說,這一現(xiàn)象在單個最低有效位 (LSB) 步長時出現(xiàn),或者在一個5V、8位系統(tǒng)中,在19.5mV步長時出現(xiàn)。

   

  圖4

  在這個8位DAC配置中,此內部開關有7個R-2R引腳被接至VREF,有1個R-2R引腳接地。

   

  圖5

  在這個DAC配置中,此內部開關有1個R-2R引腳被接至VREF,有7個R-2R引腳接地。

  在DAC載入代碼時,會有兩個區(qū)域產生輸出毛刺脈沖:同時觸發(fā)多個開關的開關同步和開關電荷轉移。

  此電阻串DAC具有一個單開關拓撲。一個電阻串DAC抽頭連接到巨大電阻串的不同點。開關網絡不需要主進位上的多個轉換,因此,產生毛刺脈沖的可能進性較低。開關電荷將會產生一個較小的毛刺脈沖,但是與R-2R結構DAC產生的毛刺脈沖相比就顯得微不足道了。

  代碼轉換期間,R-2R DAC具有多個同時開關切換。任何同步的缺失都導致短時間的開關全為高電平或全為低電平,從而使得DAC的電壓輸出遷移至電壓軌。然后這些開關恢復,在相反的方向上產生一個單突短時毛刺脈沖干擾。然后輸出穩(wěn)定。

  這些毛刺脈沖的電壓位置是完全可預計的。在使用R-2R DAC時,最糟糕的情況是毛刺脈沖誤差出現(xiàn)在所有數(shù)字位切換,同時仍然用小電壓變化進行轉換時。在這種情況下,用主進位轉換進行DAC代碼變化;從代碼1000…變換為0111…

  檢查真實DAC運行狀態(tài)

  現(xiàn)在,我們已經定義了針對短時毛刺脈沖干擾誤差的備選代碼轉換,我們可以仔細觀察一下16位DAC8881(R-2R DAC) 和16位DAC8562(電阻串DAC)的R-2R和電阻串DAC短時毛刺脈沖干擾。

  在圖6中,DAC8881的短時毛刺脈沖干擾為37.7 nV-sec,而DAC8562的短時毛刺脈沖干擾為0.1 nV-sec。在這兩張圖中,x軸的刻度為500ns/p,而y軸的刻度為50mV/p。

   

  圖6

  R-2R和電阻串短時毛刺脈沖干擾性能

  毛刺脈沖消失了

  如果存在DAC短時毛刺脈沖干擾問題,用戶可以使用外部組件來減小毛刺脈沖幅度(圖7a),或者完全消除短時毛刺脈沖干擾能量(圖7b。)

   

  圖7

  用一階低通濾波器 (a) 或采樣/保持解決方案 (b) 來減少短時毛刺脈沖干擾誤差。

  DAC之后的RC濾波器可減少毛刺脈沖幅度(圖7a)。短時毛刺脈沖干擾周期決定了適當?shù)腞C比。RC濾波器3dB的頻率比短時毛刺脈沖干擾頻率提前十倍頻。在選擇組件時需要確保電阻器的電阻值較低,否則的它將會與電阻負載一起產生一個壓降。由于毛刺脈沖能量從不會丟失,執(zhí)行單極低通濾波器的代價就是在穩(wěn)定時間加長的同時誤差被分布在更長的時間段內。

  第二種方法是使用一個采樣/保持電容器和放大器(圖7b)。外部開關和放大器消除了DAC內部開關產生的毛刺脈沖,從而獲得較小的采樣/保持 (S/H) 開關瞬態(tài)。在這個設計中,開關在DAC的整個主進位轉換期間保持打開狀態(tài)。一旦轉換完成,開關關閉,從而在CH采樣電容器上設定新輸出電壓。當DAC準備升級其輸出時,此電容器在外部開關打開時繼續(xù)保持新電壓。這個解決方案成本較高,也會占據(jù)更多的板級空間,但能夠在不增加穩(wěn)定時間的情況下減少/消除毛刺脈沖。

  結論

  短時毛刺脈沖干擾是一個非常重要的動態(tài)非線性的DAC特性,你將會在器件以工作采樣率運行時遇到這個問題。但是,這只是冰山一角。影響高速電路的其它因素還有轉換率和穩(wěn)定時間。請隨時關注下一篇與這一主題相關的文章。



關鍵詞: DAC 脈沖干擾

評論


相關推薦

技術專區(qū)

關閉