一文讀懂:深扒人臉識(shí)別60年技術(shù)發(fā)展史
“他來聽我的演唱會(huì),門票換了手銬一對(duì)”。最近歌神張學(xué)友變阿SIR,演唱會(huì)上頻頻抓到罪犯,將人臉識(shí)別技術(shù)又一次推到了大眾的視線中。要說人臉識(shí)別技術(shù)的爆發(fā),當(dāng)屬去年9月份蘋果iPhone x的發(fā)布,不再需要指紋,只需要掃描面部就可以輕松解鎖手機(jī)。任何技術(shù)一旦進(jìn)入智能手機(jī)這個(gè)消費(fèi)市場,尤其是被蘋果這個(gè)標(biāo)志性的品牌采用,就意味著它將成為一種趨勢,一個(gè)智能設(shè)備的標(biāo)配。
本文引用地址:http://m.butianyuan.cn/article/201806/381878.htm在智能手機(jī)快速崛起的這幾年,其密碼鎖經(jīng)歷了從數(shù)字密碼、手勢解鎖到指紋識(shí)別的升級(jí),發(fā)展到如今的虹膜識(shí)別和人臉識(shí)別??梢灶A(yù)料的是,由于全面屏幕的普及和更為安全、便捷的 FaceID 技術(shù)的出現(xiàn),在不久的將來,指紋識(shí)別也將被智能手機(jī)廠商們所拋棄,完成它的歷史使命。
那么人臉識(shí)別到底是一項(xiàng)怎樣的技術(shù),這期《趣科技》,與非網(wǎng)小編就將帶大家走進(jìn)人臉識(shí)別,聊聊這項(xiàng)黑科技。
人臉識(shí)別是啥玩意兒?
人臉識(shí)別技術(shù),是基于人的臉部特征信息進(jìn)行身份識(shí)別的一種生物識(shí)別技術(shù)。用攝像機(jī)或攝像頭采集含有人臉的圖像或視頻流,并自動(dòng)在圖像中檢測和跟蹤人臉,進(jìn)而對(duì)檢測到的人臉進(jìn)行臉部的一系列相關(guān)技術(shù),通常也叫做人像識(shí)別、面部識(shí)別。傳統(tǒng)的人臉識(shí)別技術(shù)主要是基于可見光圖像的人臉識(shí)別,這也是人們熟悉的識(shí)別方式。簡單的來說就是一個(gè)讓計(jì)算機(jī)認(rèn)出你的過程。
人臉識(shí)別技術(shù)主要是通過人臉圖像特征的提取與對(duì)比來進(jìn)行的。人臉識(shí)別系統(tǒng)將提取的人臉圖像的特征數(shù)據(jù)與數(shù)據(jù)庫中存儲(chǔ)的特征模板進(jìn)行搜索匹配,通過設(shè)定一個(gè)閾值,當(dāng)相似度超過這一閾值,則把匹配得到的結(jié)果輸出。將待識(shí)別的人臉特征與已得到的人臉特征模板進(jìn)行比較,根據(jù)相似程度對(duì)人臉的身份信息進(jìn)行判斷。這一過程又分為兩類:一類是確認(rèn),是一對(duì)一進(jìn)行圖像比較的過程,另一類是辨認(rèn),是一對(duì)多進(jìn)行圖像匹配對(duì)比的過程。
廣義的人臉識(shí)別實(shí)際包括構(gòu)建人臉識(shí)別系統(tǒng)的一系列相關(guān)技術(shù),包括人臉圖像采集、人臉定位、人臉識(shí)別預(yù)處理、身份確認(rèn)以及身份查找等;而狹義的人臉識(shí)別特指通過人臉進(jìn)行身份確認(rèn)或者身份查找的技術(shù)或系統(tǒng)。
人臉識(shí)別技術(shù)發(fā)展
早在20世紀(jì)50年代,認(rèn)知科學(xué)家就已著手對(duì)人臉識(shí)別展開研究。20世紀(jì)60年代,人臉識(shí)別工程化應(yīng)用研究正式開啟。當(dāng)時(shí)的方法主要利用了人臉的幾何結(jié)構(gòu),通過分析人臉器官特征點(diǎn)及其之間的拓?fù)潢P(guān)系進(jìn)行辨識(shí)。這種方法簡單直觀,但是一旦人臉姿態(tài)、表情發(fā)生變化,則精度嚴(yán)重下降。
1991年,著名的“特征臉”方法第一次將主成分分析和統(tǒng)計(jì)特征技術(shù)引入人臉識(shí)別,在實(shí)用效果上取得了長足的進(jìn)步。這一思路也在后續(xù)研究中得到進(jìn)一步發(fā)揚(yáng)光大,例如,Belhumer成功將Fisher判別準(zhǔn)則應(yīng)用于人臉分類,提出了基于線性判別分析的Fisherface方法。
由劍橋人臉數(shù)據(jù)集的特征分解獲得的前四個(gè)特征向量
21世紀(jì)的前十年,隨著機(jī)器學(xué)習(xí)理論的發(fā)展,學(xué)者們相繼探索出了基于遺傳算法、支持向量機(jī)(Support Vector Machine, SVM)、boosting、流形學(xué)習(xí)以及核方法等進(jìn)行人臉識(shí)別。 2009年至2012年,稀疏表達(dá)(Sparse Representation)因?yàn)槠鋬?yōu)美的理論和對(duì)遮擋因素的魯棒性成為當(dāng)時(shí)的研究熱點(diǎn)。
與此同時(shí),業(yè)界也基本達(dá)成共識(shí):基于人工精心設(shè)計(jì)的局部描述子進(jìn)行特征提取和子空間方法進(jìn)行特征選擇能夠取得最好的識(shí)別效果。Gabor及LBP特征描述子是迄今為止在人臉識(shí)別領(lǐng)域最為成功的兩種人工設(shè)計(jì)局部描述子。這期間,對(duì)各種人臉識(shí)別影響因子的針對(duì)性處理也是那一階段的研究熱點(diǎn),比如人臉光照歸一化、人臉姿態(tài)校正、人臉超分辨以及遮擋處理等。也是在這一階段,研究者的關(guān)注點(diǎn)開始從受限場景下的人臉識(shí)別轉(zhuǎn)移到非受限環(huán)境下的人臉識(shí)別。LFW人臉識(shí)別公開競賽在此背景下開始流行,當(dāng)時(shí)最好的識(shí)別系統(tǒng)盡管在受限的FRGC測試集上能取得99%以上的識(shí)別精度,但是在LFW上的最高精度僅僅在80%左右,距離實(shí)用看起來距離頗遠(yuǎn)。
2013年,MSRA的研究者首度嘗試了10萬規(guī)模的大訓(xùn)練數(shù)據(jù),并基于高維LBP特征和Joint Bayesian方法在LFW上獲得了95.17%的精度。這一結(jié)果表明:大訓(xùn)練數(shù)據(jù)集對(duì)于有效提升非受限環(huán)境下的人臉識(shí)別很重要。然而,以上所有這些經(jīng)典方法,都難以處理大規(guī)模數(shù)據(jù)集的訓(xùn)練場景。
2014年前后,隨著大數(shù)據(jù)和深度學(xué)習(xí)的發(fā)展,神經(jīng)網(wǎng)絡(luò)重受矚目,并在圖像分類、手寫體識(shí)別、語音識(shí)別等應(yīng)用中獲得了遠(yuǎn)超經(jīng)典方法的結(jié)果。香港中文大學(xué)的Sun Yi等人提出將卷積神經(jīng)網(wǎng)絡(luò)應(yīng)用到人臉識(shí)別上,采用20萬訓(xùn)練數(shù)據(jù),在LFW上第一次得到超過人類水平的識(shí)別精度,這是人臉識(shí)別發(fā)展歷史上的一座里程碑。
自此之后,研究者們不斷改進(jìn)網(wǎng)絡(luò)結(jié)構(gòu),同時(shí)擴(kuò)大訓(xùn)練樣本規(guī)模,將LFW上的識(shí)別精度推到99.5%以上。如表1所示,我們給出了人臉識(shí)別發(fā)展過程中一些經(jīng)典的方法及其在LFW上的精度,一個(gè)基本的趨勢是:訓(xùn)練數(shù)據(jù)規(guī)模越來越大,識(shí)別精度越來越高。
人臉識(shí)別十大關(guān)鍵技術(shù)
1、人臉檢測(Face Detection)
“人臉檢測(Face Detection)”的作用就是要檢測出圖像中人臉?biāo)谖恢谩?/p>
人臉檢測算法的輸入是一張圖像,輸出是人臉框坐標(biāo)序列,具體結(jié)果是0個(gè)人臉框或1個(gè)人臉框或多個(gè)人臉框。輸出的人臉坐標(biāo)框可以為正方形、矩形等。
人臉檢測算法的原理簡單來說是一個(gè)“掃描”加“判定”的過程。即首先在整個(gè)圖像范圍內(nèi)掃描,再逐個(gè)判定候選區(qū)域是否是人臉的過程。因此人臉檢測算法的計(jì)算速度會(huì)跟圖像尺寸大小以及圖像內(nèi)容相關(guān)。在實(shí)際算法時(shí),我們可以通過設(shè)置“輸入圖像尺寸”、或“最小臉尺寸限制”、“人臉數(shù)量上限”的方式來加速算法。
舉例說明:綠色矩形框標(biāo)注的即為人臉檢測算法檢測到的人臉位置
2、人臉配準(zhǔn)(Face Alignment)
“人臉配準(zhǔn)(Face Alignment)”所實(shí)現(xiàn)的目的是定位出人臉上五官關(guān)鍵點(diǎn)坐標(biāo)。
人臉配準(zhǔn)算法的輸入是“一張人臉圖像”和“人臉坐標(biāo)框”,輸出是五官關(guān)鍵點(diǎn)的坐標(biāo)序列。五官關(guān)鍵點(diǎn)的數(shù)量是預(yù)先設(shè)定好的一個(gè)固定數(shù)值,常見的有5點(diǎn)、68點(diǎn)、90點(diǎn)等等。
當(dāng)前效果的較好的一些人臉配準(zhǔn)技術(shù)基本通過深度學(xué)習(xí)框架實(shí)現(xiàn)。這些方法都是基于人臉檢測的坐標(biāo)框,按某種事先設(shè)定規(guī)則將人臉區(qū)域摳取出來,縮放到固定尺寸,然后進(jìn)行關(guān)鍵點(diǎn)位置的計(jì)算。另外,相對(duì)于人臉檢測,或者是后面將提到的人臉特征提取的過程,人臉配準(zhǔn)算法的計(jì)算耗時(shí)都要少很多。
舉例說明:輸入圖像以及輸出結(jié)果如下,綠色圓點(diǎn)標(biāo)注出了五官位置。
3、人臉屬性識(shí)別(Face Attribute)
“人臉屬性識(shí)別(Face Attribute)”是識(shí)別出人臉的性別、年齡、姿態(tài)、表情等屬性值的一項(xiàng)技術(shù)。這在有些相機(jī)APP中有所應(yīng)用,可以自動(dòng)識(shí)別攝像頭視野中人物的性別、年齡等特征并標(biāo)注出來。
一般的人臉屬性識(shí)別算法的輸入是“一張人臉圖”和“人臉五官關(guān)鍵點(diǎn)坐標(biāo)”,輸出是人臉相應(yīng)的屬性值。人臉屬性識(shí)別算法一般會(huì)根據(jù)人臉五官關(guān)鍵點(diǎn)坐標(biāo)將人臉對(duì)齊,具體過程為旋轉(zhuǎn)、縮放、摳取等操作后,將人臉調(diào)整到預(yù)定的大小和形態(tài),以便之后進(jìn)行屬性分析。
人臉的屬性識(shí)別包括性別識(shí)別、年齡估計(jì)、表情識(shí)別、姿態(tài)識(shí)別、發(fā)型識(shí)別等等方面。一般來說每種屬性的識(shí)別算法過程是獨(dú)立的,但是有一些新型的基于深度學(xué)習(xí)實(shí)現(xiàn)的算法可以實(shí)現(xiàn)同時(shí)輸出年齡、性別、姿態(tài)、表情等屬性識(shí)別結(jié)果。
舉例說明:人臉屬性識(shí)別輸出結(jié)果如下
4、人臉提特征(Face Feature Extraction)
“人臉提特征(Face Feature Extraction)”是將一張人臉圖像轉(zhuǎn)化為可以表征人臉特點(diǎn)的特征,具體表現(xiàn)形式為一串固定長度的數(shù)值。
人臉提特征過程的輸入是 “一張人臉圖”和“人臉五官關(guān)鍵點(diǎn)坐標(biāo)”,輸出是人臉相應(yīng)的一個(gè)數(shù)值串(特征)。人臉提特征算法實(shí)現(xiàn)的過程為:首先將五官關(guān)鍵點(diǎn)坐標(biāo)進(jìn)行旋轉(zhuǎn)、縮放等等操作來實(shí)現(xiàn)人臉對(duì)齊,然后在提取特征并計(jì)算出數(shù)值串。
舉例說明:人臉特征提取過程
5、人臉比對(duì)(Face Compare)
“人臉比對(duì)(Face Compare)”算法實(shí)現(xiàn)的目的是衡量兩個(gè)人臉之間相似度。
人臉比對(duì)算法的輸入是兩個(gè)人臉特征人臉特征由前面的人臉提特征算法獲得,輸出是兩個(gè)特征之間的相似度。
舉例說明:人臉對(duì)比過程,輸出結(jié)果為相似度96%
6、人臉驗(yàn)證(Face Verification)
“人臉驗(yàn)證(Face Verification)”是判定兩個(gè)人臉圖是否為同一人的算法。
它的輸入是兩個(gè)人臉特征,通過人臉比對(duì)獲得兩個(gè)人臉特征的相似度,通過與預(yù)設(shè)的閾值比較來驗(yàn)證這兩個(gè)人臉特征是否屬于同一人。
舉例說明:人臉驗(yàn)證過程如下,相似度96%大于閾值75%,判定屬于同一個(gè)人
評(píng)論