基于OFDM的電力載波數(shù)據(jù)傳輸模塊研究與設(shè)計
摘要:為了實現(xiàn)利用現(xiàn)有的電力線路實現(xiàn)數(shù)據(jù)傳輸,提出利用正交頻分復(fù)用(OFDM)技術(shù)芯片LME2980設(shè)計電力載波通信(PLC)模塊。通過分析電力載波傳輸信道特性和OFDM調(diào)制解調(diào)技術(shù)基本原理,完成電力載波數(shù)據(jù)傳輸模塊的設(shè)計,實現(xiàn)利用現(xiàn)有的電力線進(jìn)行數(shù)據(jù)傳輸。
關(guān)鍵詞:PLC;OFDM;LME2980;數(shù)據(jù)傳輸
電力載波通信技術(shù)(PLC)利用現(xiàn)有的電力線通過載波技術(shù)進(jìn)行數(shù)據(jù)傳輸?shù)募夹g(shù)。由于低壓電力線載波傳輸信道的干擾問題是制約低壓電力線載波通信發(fā)展和普及的主要障礙,而正交頻分復(fù)用(OFDM)調(diào)制技術(shù)具有抗干擾、抗衰落能力強的特點,采用正交頻分復(fù)用(OFDM)調(diào)制技術(shù)的芯片設(shè)計電力載波數(shù)據(jù)傳輸模塊,能更好的克服電力線的強干擾、強衰減等缺陷。因此,文中提出一種基于OFDM的電力線載波數(shù)據(jù)傳輸模塊設(shè)計方案,利用現(xiàn)有的電力線實現(xiàn)載波通信。
1 載波通信信道特性
利用電力線載波進(jìn)行數(shù)據(jù)傳輸,可以充分發(fā)揮電力資源優(yōu)勢,從而推動電力線載波通信的廣泛應(yīng)用,電力載波的數(shù)據(jù)傳輸系統(tǒng)框圖如圖1所示。
但在電力線上的數(shù)據(jù)傳輸,還未達(dá)到令人滿意的水平,這在一定程度上限制了電力載波通信的廣泛應(yīng)用。主要原因有:電力線上的負(fù)載接入較多,電器頻率特性各不相同,阻抗時變大,很難做到阻抗匹配。電力線上存在高噪聲,各種用電設(shè)備經(jīng)常頻繁開閉,就會給電力線上帶來各種噪聲干擾,而且幅度比較大。電力線對載波信號造成高削減。當(dāng)電力線上負(fù)荷很重時,造成對載波信號的高削減。因此,利用電力線載波的方式傳輸數(shù)據(jù)時,需要進(jìn)行以下幾方面考慮:
1)較高的頻譜利用率,以適應(yīng)電力線信道有效帶寬窄的特點。
2)較好的功率利用率,能把功率集中在有效的頻帶中,降低功率損失。
3)較強的噪聲抑制能力,并能在信噪比很低的情況下正常工作。
4)載波頻率的選取,盡可能使電力線呈現(xiàn)較高的輸入阻抗,減小對載波信號的衰減。
2 OFDM技術(shù)
2.1 OFDM介紹
OFDM(正交頻分復(fù)用)技術(shù)實際上是MCM(Multi-Carrier Modulation,多載波調(diào)制)的一種。其主要思想是:將信道分成若干正交子信道,將高速數(shù)據(jù)信號轉(zhuǎn)換成并行的低速子數(shù)據(jù)流,調(diào)制到在每個子信道上進(jìn)行傳輸。正交信號可以通過在接收端采用相關(guān)技術(shù)來分開,這樣可以減少子信道之間的相互干擾(ICI)。每個子信道上的信號帶寬小于信道的相關(guān)帶寬,因此每個子信道上的可以看成平坦性衰落,從而可以消除符號間干擾。而且由于每個子信道的帶寬僅僅是原信道帶寬的一小部分,信道均衡變得相對容易。
2.2 OFDM技術(shù)的特點
1)有效降低衰減對通信質(zhì)量的影響
低壓電力線上普遍存在著頻率選擇性衰落,而且這種衰減還具有時變性。電力線網(wǎng)絡(luò)中的各種不確定性因素使得網(wǎng)絡(luò)中經(jīng)常發(fā)生突發(fā)性的衰減。OFDM系統(tǒng)將突發(fā)性的衰減造成的誤碼分散到了各個互不相關(guān)的子信道上,從而變?yōu)殡S機性的誤碼。這樣就可以利用編碼糾錯技術(shù)恢復(fù)出所傳輸?shù)男畔ⅰ?br /> 2)抗碼間干擾(ISI)能力強
在電力線信道中,由于存在多徑效應(yīng),多個信號在不同的路徑傳輸,所以到達(dá)接收機時會有一定時延,這就造成ISl。OFDM將高速的串行數(shù)據(jù)分割為Ⅳ個子信號,這樣分割后碼元的速率降低了Ⅳ倍。周期延長Ⅳ倍。同時再在碼元間加入保護(hù)間隙和循環(huán)前綴,這樣只要數(shù)字碼元周期大于最大延時時間就可以有效抑制ISI干擾。
3)頻譜利用率高
OFDM允許重疊的正交子載波作為子信道,而不是傳統(tǒng)的利用保護(hù)頻帶分離子信道的方式,提高了頻率利用效率。
4)OFDM對頻率偏移比較敏感。由于子信道的頻譜相互覆蓋,這就對它們之間的正交性提出了嚴(yán)格的要求。由于信道的時變性,在傳輸過程中出現(xiàn)的信號頻譜偏移或發(fā)射機與接收機本地振蕩器之間存在的頻率偏差,都會使OFDM系統(tǒng)子載波之間的正交性遭到破壞,導(dǎo)致載波間干擾(ICI)。
因此,采用正交頻分復(fù)用(OFDM)調(diào)制技術(shù)的芯片設(shè)計的電力載波數(shù)據(jù)傳輸系統(tǒng)能很好的解決數(shù)據(jù)傳輸過程中信號衰減大、碼間干擾嚴(yán)重、頻譜利用率不高的應(yīng)用難題。
3 電力載波通信模塊的設(shè)計
為了設(shè)計穩(wěn)定、可靠、誤碼率低的電力載波數(shù)據(jù)傳輸模塊,本課題采用力合微電子有限公司生產(chǎn)的電力載波芯片LME2980作為模塊的核心芯片。LME2980是國內(nèi)首款OFDM低壓電力線載波芯片,針對國內(nèi)電網(wǎng)環(huán)境及低壓電力線載波通信應(yīng)用需求而優(yōu)化設(shè)計,具有國際領(lǐng)先的技術(shù)及性能。芯片具有以下特點:
1)抗干擾能力強,對電網(wǎng)信道具有自適應(yīng)能力,通信可靠、穩(wěn)定。這主要是由于OFDM采用多個正交子載波(通常數(shù)百個甚至上千個)同時傳輸數(shù)據(jù)。
2)通信速率高,因而通信效率高,實時性強。OFDM典型的通信速率在幾十kbps。
電力載波數(shù)據(jù)傳輸模塊由LME2980芯片電路,信號耦合和接收濾波電路,信號放大濾波電路,過零檢測電路和接口電路組成。數(shù)據(jù)傳輸模塊系統(tǒng)框圖如圖2所示。
3.1 LME2980電力載波電路
LME2980內(nèi)置MCU,可運行用戶定義的通信協(xié)議及應(yīng)用軟件。同時,LME2980內(nèi)置模擬接收前端電路,大動態(tài)范圍自動增益接收放大器等,外圍電路簡單,應(yīng)用方案成本低,使用方便。LME2980電力載波電路如圖3所示。
3.2 信號放大濾波電路
信號放大濾波電路的功能是把從LME2980芯片輸出的模擬信號進(jìn)行放大,進(jìn)行簡單的濾波后,由信號耦合電路耦合到電纜線上,滿足電力線傳輸?shù)囊蟆P盘柗糯鬄V波電路如圖4所示。
3.3 信號耦合和接收濾波電路
由信號耦合變壓器T1和C11組成的高通濾波電路,用于隔離高電壓的工頻交流電,F(xiàn)1是12V的TVS管,用于消除來自電力線上的高頻高強度干擾,從而保護(hù)內(nèi)部電路。信號耦合和接收濾波電路如圖5所示。
3.4 過零檢測電路
過零檢測電路的功能是把工頻交流電的過零時刻以脈沖的方式告知載波芯片,從而為分時通信以及相位判斷提供依據(jù)。過零檢測電路如圖6所示。
3.5 接口電路
接口電路的主要作用是為載波模塊與外界提供接口,提供電源并建立通信。接口電路如圖7所示。
4 測試
將設(shè)計好的電力載波數(shù)據(jù)傳輸模塊分別安裝在電力線的兩端,利用串口助手進(jìn)行收數(shù)據(jù)測試(串口的設(shè)置為:波特率為115200、起始位為1b、數(shù)據(jù)位8b、停止位1b和無流控制協(xié)議),模塊一發(fā)送數(shù)據(jù):WHAT IS NAME?模塊二接收后發(fā)送:CSUST ZHangLi測試過程中沒有亂碼和無碼產(chǎn)生,系統(tǒng)正常工作,系統(tǒng)測試如圖8所示。
5 結(jié)束語
文中通過分析電力載波傳輸信道特性和OFDM調(diào)制解調(diào)技術(shù)基本原理,選用OFDM低壓電力線載波芯片設(shè)計電力載波數(shù)據(jù)傳輸模塊,通過對模塊進(jìn)行測試,模塊正常收發(fā)傳輸數(shù)據(jù)。
利用現(xiàn)有的電力線作為傳輸媒介,通過電力線傳輸數(shù)據(jù),節(jié)省普通通信所需要的數(shù)據(jù)傳輸媒體,對于推動電力載波通信在物聯(lián)網(wǎng)的應(yīng)用具有積極的意義。
評論