新聞中心

EEPW首頁(yè) > 設(shè)計(jì)應(yīng)用 > 為什么叫“卡爾曼”,卡爾曼濾波器算法介紹

為什么叫“卡爾曼”,卡爾曼濾波器算法介紹

作者: 時(shí)間:2018-09-26 來(lái)源:網(wǎng)絡(luò) 收藏

  首先看看為什么叫“”。跟其他著名的理論(例如傅立葉變換,泰勒級(jí)數(shù)等等)一樣,也是一個(gè)人的名字,而跟他們不同的是,他是個(gè)現(xiàn)代人!

本文引用地址:http://m.butianyuan.cn/article/201809/392305.htm

  1、全名Rudolf Emil Kalman

  匈牙利數(shù)學(xué)家,1930年出生于匈牙利首都布達(dá)佩斯。1953,1954年于麻省理工學(xué)院分別獲得電機(jī)工程學(xué)士及碩士學(xué)位。1957年于哥倫比亞大學(xué)獲得博士學(xué)位。我們現(xiàn)在要學(xué)習(xí)的卡爾曼,正是源于他的博士論文和1960年發(fā)表的論文《A New Approach to Linear Filtering and Prediction Problems》(線性濾波與預(yù)測(cè)問(wèn)題的新方法)。

  簡(jiǎn)單來(lái)說(shuō),卡爾曼是一個(gè)“optimal recursive data processing algorithm(最優(yōu)化自回歸數(shù)據(jù)處理算法)”。對(duì)于解決很大部分的問(wèn)題,他是最優(yōu),效率最高甚至是最有用的。他的廣泛應(yīng)用已經(jīng)超過(guò)30年,包括機(jī)器 人導(dǎo)航,控制,傳感器數(shù)據(jù)融合甚至在軍事方面的雷達(dá)系統(tǒng)以及導(dǎo)彈追蹤等等。近年來(lái)更被應(yīng)用于計(jì)算機(jī)圖像處理,例如頭臉識(shí)別,圖像分割,圖像邊緣檢測(cè)等等。

  2、卡爾曼的介紹(Introduction to the Kalman Filter)

  為了可以更加容易的理解卡爾曼濾波器,這里會(huì)應(yīng)用形象的描述方法來(lái)講解,而不是像大多數(shù)參考書(shū)那樣羅列一大堆的數(shù)學(xué)公式和數(shù)學(xué)符號(hào)。但是,他的5條公式是其核心內(nèi)容。結(jié)合現(xiàn)代的計(jì)算機(jī),其實(shí)卡爾曼的程序相當(dāng)?shù)暮?jiǎn)單,只要你理解了他的那5條公式。

  在介紹他的5條公式之前,先讓我們來(lái)根據(jù)下面的例子一步一步的探索。

  假設(shè)我們要研究的對(duì)象是一個(gè)房間的溫度。根據(jù)你的經(jīng)驗(yàn)判斷,這個(gè)房間的溫度是恒定的,也就是下一分鐘的溫度等于現(xiàn)在這一分鐘的溫度(假設(shè)我們用一分鐘來(lái)做時(shí) 間單位)。假設(shè)你對(duì)你的經(jīng)驗(yàn)不是100%的相信,可能會(huì)有上下偏差幾度。我們把這些偏差看成是高斯白噪聲(White Gaussian Noise),也就是這些偏差跟前后時(shí)間是沒(méi)有關(guān)系的而且符合高斯分配(Gaussian Distribution)。另外,我們?cè)诜块g里放一個(gè)溫度計(jì),但是這個(gè)溫度計(jì)也不準(zhǔn)確的,測(cè)量值會(huì)比實(shí)際值偏差。我們也把這些偏差看成是高斯白噪聲。

  好了,現(xiàn)在對(duì)于某一分鐘我們有兩個(gè)有關(guān)于該房間的溫度值:你根據(jù)經(jīng)驗(yàn)的預(yù)測(cè)值(系統(tǒng)的預(yù)測(cè)值)和溫度計(jì)的值(測(cè)量值)。下面我們要用這兩個(gè)值結(jié)合他們各自的噪聲來(lái)估算出房間的實(shí)際溫度值。

  假如我們要估算k時(shí)刻的是實(shí)際溫度值。首先你要根據(jù)k-1時(shí)刻的溫度值,來(lái)預(yù)測(cè)k時(shí)刻的溫度。因?yàn)槟阆嘈艤囟仁呛愣ǖ?,所以你?huì)得到k時(shí)刻的溫度預(yù)測(cè)值是跟k-1時(shí)刻一樣的,假設(shè)是23度,同時(shí)該值的高斯噪聲的偏差是5度(5是這樣得到的:如果k-1時(shí)刻估算出的最優(yōu)溫度值的偏差是3,你對(duì)自己預(yù)測(cè)的不確定度是4度,他們平方相加再開(kāi)方,就是5)。然后,你從溫度計(jì)那里得到了k時(shí)刻的溫度值,假設(shè)是25度,同時(shí)該值的偏差是4度。

  由于我們用于估算k時(shí)刻的實(shí)際溫度有兩個(gè)溫度值,分別是23度和25度。究竟實(shí)際溫度是多少呢?相信自己還是相信溫度計(jì)呢?究竟相信誰(shuí)多一點(diǎn),我們可以用他們的covariance來(lái)判斷。因?yàn)镵g^2=5^2/(5^2+4^2),所以Kg=0.78,我們可以估算出k時(shí)刻的實(shí)際溫度值是:23+0.78*(25-23)=24.56度。可以看出,因?yàn)闇囟扔?jì)的covariance比較小(比較相信溫度計(jì)),所以估算出的最優(yōu)溫度值偏向溫度計(jì)的值。

  現(xiàn)在我們已經(jīng)得到k時(shí)刻的最優(yōu)溫度值了,下一步就是要進(jìn)入k+1時(shí)刻,進(jìn)行新的最優(yōu)估算。到現(xiàn)在為止,好像還沒(méi)看到什么自回歸的東西出現(xiàn)。對(duì)了,在進(jìn)入k+1時(shí)刻之前,我們還要算出k時(shí)刻那個(gè)最優(yōu)值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。這里的5就是上面的k時(shí)刻你預(yù)測(cè)的那個(gè)23度溫度值的偏差,得出的2.35就是進(jìn)入k+1時(shí)刻以后k時(shí)刻估算出的最優(yōu)溫度值的偏差(對(duì)應(yīng)于上面的3)。

  就是這樣,卡爾曼濾波器就不斷的把covariance遞歸,從而估算出最優(yōu)的溫度值。他運(yùn)行的很快,而且它只保留了上一時(shí)刻的covariance。上面的Kg,就是卡爾曼增益(Kalman Gain)。他可以隨不同的時(shí)刻而改變他自己的值,是不是很神奇!

  下面就要言歸正傳,討論真正工程系統(tǒng)上的卡爾曼。

  3、卡爾曼濾波器算法(The Kalman Filter Algorithm)

  在這一部分,我們就來(lái)描述源于Dr Kalman 的卡爾曼濾波器。下面的描述,會(huì)涉及一些基本的概念知識(shí),包括概率(Probability),隨即變量(Random Variable),高斯或正態(tài)分配(Gaussian Distribution)還有State-space Model等等。但對(duì)于卡爾曼濾波器的詳細(xì)證明,這里不能一一描述。

  首先,我們先要引入一個(gè)離散控制過(guò)程的系統(tǒng)。該系統(tǒng)可用一個(gè)線性隨機(jī)微分方程(Linear Stochastic Difference equation)來(lái)描述:

  X(k)=A X(k-1)+B U(k)+W(k)

  再加上系統(tǒng)的測(cè)量值:

  Z(k)=H X(k)+V(k)

  上兩式子中,X(k)是k時(shí)刻的系統(tǒng)狀態(tài),U(k)是k時(shí)刻對(duì)系統(tǒng)的控制量。A和B是系統(tǒng)參數(shù),對(duì)于多模型系統(tǒng),他們?yōu)榫仃嚒?Z(k)是k時(shí)刻的測(cè)量值,H是測(cè)量系統(tǒng)的參數(shù),對(duì)于多測(cè)量系統(tǒng),H為矩陣。W(k)和V(k)分別表示過(guò)程和測(cè)量的噪聲。他們被假設(shè)成高斯白噪聲 (White Gaussian Noise),他們的covariance 分別是Q,R(這里我們假設(shè)他們不隨系統(tǒng)狀態(tài)變化而變化)。

  對(duì)于滿足上面的條件(線性隨機(jī)微分系統(tǒng),過(guò)程和測(cè)量都是高斯白噪聲),卡爾曼濾波器是最優(yōu)的信息處理器。下面我們來(lái)用他們結(jié)合他們的covariances 來(lái)估算系統(tǒng)的最優(yōu)化輸出(類似上一節(jié)那個(gè)溫度的例子)。

  首先我們要利用系統(tǒng)的過(guò)程模型,來(lái)預(yù)測(cè)下一狀態(tài)的系統(tǒng)。假設(shè)現(xiàn)在的系統(tǒng)狀態(tài)是k,根據(jù)系統(tǒng)的模型,可以基于系統(tǒng)的上一狀態(tài)而預(yù)測(cè)出現(xiàn)在狀態(tài):

  X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)

  式(1)中,X(k|k-1)是利用上一狀態(tài)預(yù)測(cè)的結(jié)果,X(k-1|k-1)是上一狀態(tài)最優(yōu)的結(jié)果,U(k)為現(xiàn)在狀態(tài)的控制量,如果沒(méi)有控制量,它可以為0。

  到現(xiàn)在為止,我們的系統(tǒng)結(jié)果已經(jīng)更新了,可是,對(duì)應(yīng)于X(k|k-1)的covariance還沒(méi)更新。我們用P表示covariance:

  P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2)

  式(2)中,P(k|k-1)是X(k|k-1)對(duì)應(yīng)的covariance,P(k-1|k-1)是X(k-1|k-1)對(duì)應(yīng)的 covariance,A’表示A的轉(zhuǎn)置矩陣,Q是系統(tǒng)過(guò)程的covariance。式子1,2就是卡爾曼濾波器5個(gè)公式當(dāng)中的前兩個(gè),也就是對(duì)系統(tǒng)的預(yù) 測(cè)。

  現(xiàn)在我們有了現(xiàn)在狀態(tài)的預(yù)測(cè)結(jié)果,然后我們?cè)偈占F(xiàn)在狀態(tài)的測(cè)量值。結(jié)合預(yù)測(cè)值和測(cè)量值,我們可以得到現(xiàn)在狀態(tài)(k)的最優(yōu)化估算值X(k|k):

  X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)

  其中Kg為卡爾曼增益(Kalman Gain):

  Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) ……… (4)

  到現(xiàn)在為止,我們已經(jīng)得到了k狀態(tài)下最優(yōu)的估算值X(k|k)。但是為了要另卡爾曼濾波器不斷的運(yùn)行下去直到系統(tǒng)過(guò)程結(jié)束,我們還要更新k狀態(tài)下X(k|k)的covariance:

  P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)

  其中I 為1的矩陣,對(duì)于單模型單測(cè)量,I=1。當(dāng)系統(tǒng)進(jìn)入k+1狀態(tài)時(shí),P(k|k)就是式子(2)的P(k-1|k-1)。這樣,算法就可以自回歸的運(yùn)算下去。

  卡爾曼濾波器的原理基本描述了,式子1,2,3,4和5就是他的5 個(gè)基本公式。根據(jù)這5個(gè)公式,可以很容易的實(shí)現(xiàn)計(jì)算機(jī)的程序。

  下面,我會(huì)用程序舉一個(gè)實(shí)際運(yùn)行的例子。。。

  4、簡(jiǎn)單例子(A Simple Example)

  這里我們結(jié)合第二第三節(jié),舉一個(gè)非常簡(jiǎn)單的例子來(lái)說(shuō)明卡爾曼濾波器的工作過(guò)程。所舉的例子是進(jìn)一步描述第二節(jié)的例子,而且還會(huì)配以程序模擬結(jié)果。

  根據(jù)第二節(jié)的描述,把房間看成一個(gè)系統(tǒng),然后對(duì)這個(gè)系統(tǒng)建模。當(dāng)然,我們見(jiàn)的模型不需要非常地精確。我們所知道的這個(gè)房間的溫度是跟前一時(shí)刻的溫度相同的,所以A=1。沒(méi)有控制量,所以U(k)=0。因此得出:

  X(k|k-1)=X(k-1|k-1) ……….. (6)

  式子(2)可以改成:

  P(k|k-1)=P(k-1|k-1) +Q ……… (7)

  因?yàn)闇y(cè)量的值是溫度計(jì)的,跟溫度直接對(duì)應(yīng),所以H=1。式子3,4,5可以改成以下:

  X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1)) ……… (8)

  Kg(k)= P(k|k-1) / (P(k|k-1) + R) ……… (9)

  P(k|k)=(1-Kg(k))P(k|k-1) ……… (10)

  現(xiàn)在我們模擬一組測(cè)量值作為輸入。假設(shè)房間的真實(shí)溫度為25度,我模擬了200個(gè)測(cè)量值,這些測(cè)量值的平均值為25度,但是加入了標(biāo)準(zhǔn)偏差為幾度的高斯白噪聲(在圖中為藍(lán)線)。

  為了令卡爾曼濾波器開(kāi)始工作,我們需要告訴卡爾曼兩個(gè)零時(shí)刻的初始值,是X(0|0)和P(0|0)。他們的值不用太在意,隨便給一個(gè)就可以了,因?yàn)殡S著卡 爾曼的工作,X會(huì)逐漸的收斂。但是對(duì)于P,一般不要取0,因?yàn)檫@樣可能會(huì)令卡爾曼完全相信你給定的X(0|0)是系統(tǒng)最優(yōu)的,從而使算法不能收斂。我選了 X(0|0)=1度,P(0|0)=10。

  該系統(tǒng)的真實(shí)溫度為25度,圖中用黑線表示。圖中紅線是卡爾曼濾波器輸出的最優(yōu)化結(jié)果(該結(jié)果在算法中設(shè)置了Q=1e-6,R=1e-1)。

  ××××××××××××××××××

  附matlab下面的kalman濾波程序:

  clear

  N=200;

  w(1)=0;

  w=randn(1,N)

  x(1)=0;

  a=1;

  for k=2:N;

  x(k)=a*x(k-1)+w(k-1);

  end

  V=randn(1,N);

  q1=std(V);

  Rvv=q1.^2;

  q2=std(x);

  Rxx=q2.^2;

  q3=std(w);

  Rww=q3.^2;

  c=0.2;

  Y=c*x+V;

  p(1)=0;

  s(1)=0;

  for t=2:N;

  p1(t)=a.^2*p(t-1)+Rww;

  b(t)=c*p1(t)/(c.^2*p1(t)+Rvv);

  s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));

  p(t)=p1(t)-c*b(t)*p1(t);

  end

  t=1:N;

  plot(t,s,'r',t,Y,'g',t,x,'b');



關(guān)鍵詞: 卡爾曼 濾波器

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉