谷歌AI負(fù)責(zé)人Jeff Dean:一文回顧谷歌的2018技術(shù)進(jìn)展
我們研究了Google軟件定義網(wǎng)絡(luò)WAN,這是一個(gè)獨(dú)立的聯(lián)合查詢處理平臺(tái),可以在許多存儲(chǔ)系統(tǒng)中對(duì)基于不同文件格式存儲(chǔ)的數(shù)據(jù)執(zhí)行SQL查詢(BigTable,Spanner, Google Spreadsheets等)
本文引用地址:http://m.butianyuan.cn/article/201901/396818.htm運(yùn)行內(nèi)容托管等大型Web服務(wù)需要在動(dòng)態(tài)環(huán)境中實(shí)現(xiàn)穩(wěn)定的負(fù)載平衡。我們開發(fā)了一致的哈希方案,對(duì)每臺(tái)服務(wù)器的最大負(fù)載提供了嚴(yán)格的可證明保證,并將其部署到Google Cloud Pub / Sub中的云客戶。
AutoML
去年,我們展示了如何使用進(jìn)化算法自動(dòng)發(fā)現(xiàn)最先進(jìn)的神經(jīng)網(wǎng)絡(luò)架構(gòu),快速構(gòu)建計(jì)算機(jī)視覺模型的AutoML。還探討了強(qiáng)化學(xué)習(xí)如何應(yīng)用于除神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索之外的其他問題,表明它可以用于1)自動(dòng)生成圖像變換序列,以提高各種圖像模型的準(zhǔn)確性,以及2)找到新的符號(hào)優(yōu)化表達(dá)式,比常用的優(yōu)化更新規(guī)則更有效。
我們的另一個(gè)重點(diǎn)是自動(dòng)發(fā)現(xiàn)計(jì)算效率高的神經(jīng)網(wǎng)絡(luò)架構(gòu),以便它們可以在自動(dòng)駕駛環(huán)境中運(yùn)行,這些環(huán)境對(duì)計(jì)算資源或推理時(shí)間有嚴(yán)格的限制。為此,我們認(rèn)為在強(qiáng)化學(xué)習(xí)架構(gòu)搜索的獎(jiǎng)勵(lì)函數(shù)中將模型的準(zhǔn)確性與其推理計(jì)算時(shí)間相結(jié)合,可以找到高度準(zhǔn)確的模型,同時(shí)滿足特定的性能約束。我們還探索了使用ML來學(xué)習(xí)自動(dòng)壓縮ML模型以獲得更少的參數(shù)并使用更少的計(jì)算資源。
TPU
TPU已經(jīng)實(shí)現(xiàn)了谷歌研究方面的突破,例如BERT(前面已討論過)。它還允許世界各地的研究人員通過開源建立谷歌研究,并尋求自己的新突破。例如,任何人都可以通過Colab免費(fèi)對(duì)TPU上的BERT進(jìn)行微調(diào),而TensorFlow Research Cloud讓數(shù)千名研究人員有機(jī)會(huì)從更大量的免費(fèi)云TPU計(jì)算能力中受益。
在谷歌內(nèi)部,TPU還推動(dòng)了Google的核心產(chǎn)品的重大改進(jìn),包括搜索,YouTube,Gmail,Google智能助理,谷歌翻譯等等。
開源軟件和數(shù)據(jù)集
我們的開源工具TensorFlow已經(jīng)被下載超過3000萬。2018年,TensorFlow有八個(gè)主要版本,并增加了快速執(zhí)行和分發(fā)策略等功能。隨著TensorFlow Lite、TensorFlow.js 和TensorFlow Probability等相關(guān)產(chǎn)品的推出,TensorFlow生態(tài)系統(tǒng)在2018年大幅增長(zhǎng)。
除了繼續(xù)開發(fā)現(xiàn)有的開源生態(tài)系統(tǒng)之外,我們?cè)?018年引入了一個(gè)新的框架,用于靈活和可重復(fù)強(qiáng)化學(xué)習(xí)的可視化工具,可以快速了解數(shù)據(jù)集的特征(無需編寫任何代碼)。
今年,我們很高興發(fā)布Google數(shù)據(jù)集搜索,這是一種從所有網(wǎng)絡(luò)中查找公共數(shù)據(jù)集的新工具。多年來,我們還策劃并發(fā)布了許多新穎的數(shù)據(jù)集。
我們發(fā)布了Open Images V4數(shù)據(jù)集,包含190萬張圖片,共計(jì)600個(gè)類別,共標(biāo)記了1540萬個(gè)邊界框,這是迄今的有對(duì)象位置注釋的最大數(shù)據(jù)集。這些邊界框大部分都是由專業(yè)注釋人員手動(dòng)繪制的,確保了它們的準(zhǔn)確性和一致性。
健康
在過去幾年中,我們一直將ML應(yīng)用于健康,我們?cè)谶@個(gè)領(lǐng)域的一般方法是與醫(yī)療保健組織合作解決基礎(chǔ)研究問題(利用臨床專家的反饋優(yōu)化技術(shù)),然后將結(jié)果發(fā)表在同行評(píng)審的科學(xué)和臨床期刊上。一旦研究得到臨床和科學(xué)驗(yàn)證,我們就會(huì)進(jìn)行用戶和HCI研究,以了解我們?nèi)绾卧诂F(xiàn)實(shí)臨床環(huán)境中進(jìn)行部署。2018年,我們?cè)谟?jì)算機(jī)輔助診斷上取得新的突破。
2018年,我們研發(fā)了一個(gè)可以與視網(wǎng)膜專家相媲美的深度學(xué)習(xí)模型。我們與Verily的Alphabet同事合作,在印度的Aravind Eye Hospitals和泰國(guó)衛(wèi)生部附屬的Rajavithi醫(yī)院等 10多個(gè)地點(diǎn)部署了這種糖尿病視網(wǎng)膜病變檢測(cè)系統(tǒng)。
我們還發(fā)表了一種機(jī)器學(xué)習(xí)模型的研究,該模型可以評(píng)估視網(wǎng)膜圖像的心血管風(fēng)險(xiǎn),可以幫助臨床醫(yī)生更好地了解患者的健康狀況。
研究推廣
2018年,我們?cè)诩蛹{阿克拉建立了我們?cè)诜侵薜牡谝粋€(gè)人工智能研究辦公室,同時(shí)擴(kuò)大了在巴黎,東京和阿姆斯特丹的人工智能研究,并在普林斯頓開設(shè)了一個(gè)研究實(shí)驗(yàn)室。
評(píng)論