新聞中心

EEPW首頁(yè) > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 使用碳化硅MOSFET提升工業(yè)驅(qū)動(dòng)器的能源效率

使用碳化硅MOSFET提升工業(yè)驅(qū)動(dòng)器的能源效率

作者:意法半導(dǎo)體Carmelo Parisi,Antonino Raciti,Angelo Sciacc 時(shí)間:2020-06-04 來(lái)源:電子產(chǎn)品世界 收藏


本文引用地址:http://m.butianyuan.cn/article/202006/413890.htm

3.靜態(tài)與動(dòng)態(tài)效能

以下將比較兩種技術(shù)的靜態(tài)和動(dòng)態(tài)特質(zhì),設(shè)定條件為一般運(yùn)作,接面溫度TJ = 110 °C。

圖5為兩種元件的輸出靜態(tài)電流電壓特性曲線(xiàn)(V-I curves)。兩相比較可看出無(wú)論何種狀況下碳化硅MOSFET的優(yōu)勢(shì)都大幅領(lǐng)先,因?yàn)樗碾妷撼尸F(xiàn)線(xiàn)性向前下降。

即使碳化硅MOSFET必須要有VGS  = 18 V才能達(dá)到很高的RDS(ON),但可保證靜態(tài)效能遠(yuǎn)優(yōu)于硅基,能大幅減少導(dǎo)電耗損。

image.png

圖5:比較動(dòng)態(tài)特質(zhì)

兩種元件都已經(jīng)利用雙脈波測(cè)試,從動(dòng)態(tài)的角度加以分析。兩者的比較是以應(yīng)用為基礎(chǔ),例如600 V匯流排直流電壓,開(kāi)啟和關(guān)閉的dv/dt均設(shè)定為5 V/ns。

圖6為實(shí)驗(yàn)期間所測(cè)得數(shù)據(jù)之摘要。跟硅基相比,在本實(shí)驗(yàn)分析的電流范圍以?xún)?nèi),碳化硅MOSFET的開(kāi)啟和關(guān)閉能耗都明顯較低(約減少50%),甚至在5 V/ns的狀況下亦然。

image.png


圖6:動(dòng)態(tài)特色的比較

image.png


表2:模擬條件

4.電熱模擬

為比較兩種元件在一般工業(yè)傳動(dòng)應(yīng)用的表現(xiàn),我們利用意法半導(dǎo)體的PowerStudio軟體進(jìn)行電熱模擬。模擬設(shè)定了這類(lèi)應(yīng)用常見(jiàn)的輸入條件,并使用所有與溫度相關(guān)的參數(shù)來(lái)估算整體能源耗損。

用來(lái)比較的工業(yè)傳動(dòng),標(biāo)稱(chēng)功率為20 kW,換流速度為5 V/ns(輸入條件如表2所列)。

設(shè)定4kHz和8 kHz兩種不同切換頻率,以凸顯使用解決方案來(lái)增加fsw之功能有哪些好處。

因?yàn)榭剂康诫S著時(shí)間推移,所有馬達(dá)通常要在不同的作業(yè)點(diǎn)運(yùn)轉(zhuǎn),所以我們利用一些基本假設(shè)來(lái)計(jì)算傳動(dòng)的功率損耗。依照定義IE等級(jí)成套傳動(dòng)模組(CDM)的EN 50598-2標(biāo)準(zhǔn),還有新型IES等級(jí)的電氣傳動(dòng)系統(tǒng)(PDS),我們將兩個(gè)作業(yè)點(diǎn)套用在模擬中:一是50%扭矩所產(chǎn)生的電流,第二個(gè)則為100%,對(duì)我們的應(yīng)用來(lái)說(shuō)這代表輸出電流分別為24和40 Arms。

若以最大負(fù)載點(diǎn)而論(100%扭力電流),兩種元件的散熱片熱電阻都選擇維持大約110 °C的接面溫度。

圖7在50%扭力電流和切換頻率4-8 kHz的狀況下,比較了碳化硅MOSFET和硅基解決方案的功率耗損。

圖8則是在100%扭力電流下以同樣方式進(jìn)行比較。

功率耗損分為開(kāi)關(guān)(傳導(dǎo)和切換)和反平行二極體,以找出主要差別。和硅基IGBT相比,碳化硅MOSFET解決方案很明顯可大幅降低整體功率損耗。有這樣的結(jié)果是因?yàn)闊o(wú)論靜態(tài)和動(dòng)態(tài)狀況下,不分開(kāi)關(guān)或二極體,功率耗損都會(huì)減少。

最后,無(wú)論是4或8 kHz的切換頻率,兩種負(fù)載狀況的功率耗損減少都落在50%范圍以?xún)?nèi)。

從這些結(jié)果可以看出,這樣做就能達(dá)成更高的能源效率,減少散熱片的散熱需求,對(duì)重量、體積和成本來(lái)說(shuō)也都有好處。

表3總結(jié)了整個(gè)反相器相關(guān)功率耗損的模擬結(jié)果(作業(yè)點(diǎn)100%),以及為了讓兩種元件接面溫度維持在110 °C所必需的相關(guān)散熱片熱電阻條件。

在模擬所設(shè)定的條件下,當(dāng)8 kHz時(shí)Rth會(huì)從硅基IGBT的0.22 °C/W降到碳化硅MOSFET的0.09 °C/W。大幅減少代表散熱片可減容5:1(就強(qiáng)制對(duì)流型態(tài)的產(chǎn)品而言),對(duì)系統(tǒng)體積、重量和成本有明顯好處。在4 kHz的狀況下,Rth會(huì)從0.35降到0.17 °C/W,相當(dāng)于4:1容減。

image.png

圖7:50%扭力電流下每個(gè)開(kāi)關(guān)的功率耗損

image.png

表3:模擬結(jié)果概況(作業(yè)點(diǎn)100%)

5.對(duì)能源成本的經(jīng)濟(jì)影響

當(dāng)工業(yè)應(yīng)用對(duì)能源的需求較高且必須密集使用,能源效率就成了關(guān)鍵因素之一。

為了將模擬的能源耗損數(shù)據(jù)結(jié)果轉(zhuǎn)換成能源成本比較概況,必須就年度的負(fù)載設(shè)定檔和能源成本這些會(huì)隨著時(shí)間或地點(diǎn)而有所不同的參數(shù),設(shè)定一些基本假設(shè)。為達(dá)到簡(jiǎn)化的目的,我們把狀況設(shè)定在只含兩種功率位階(負(fù)載因素100和50%)的基本負(fù)載設(shè)定檔。設(shè)定檔1和設(shè)定檔2的差別,只在于每個(gè)功率位準(zhǔn)持續(xù)的時(shí)間長(zhǎng)短。為凸顯能源成本的減少,我們將狀況設(shè)定為持續(xù)運(yùn)作的工業(yè)應(yīng)用。任務(wù)檔案1設(shè)定為每年有60%的時(shí)間處于負(fù)載50%,其他時(shí)間(40%)負(fù)載100%。任務(wù)檔案2也是這樣。

對(duì)于每個(gè)任務(wù)檔案全年能源成本的經(jīng)濟(jì)影響,乃以0.14 €/kWh為能源成本來(lái)計(jì)算(歐洲統(tǒng)計(jì)局?jǐn)?shù)據(jù),以非家庭用戶(hù)價(jià)格計(jì)算)。

從表4可以看出,碳化硅MOSFET每年可省下895.7到1415 kWh的能源。每年可省下的對(duì)應(yīng)成本在125.4到198.1歐元之間,如電壓變動(dòng)比率限制不那么嚴(yán)格,則可省更多。

image.png

圖8:100%扭力電流下每個(gè)開(kāi)關(guān)的功率耗損

image.png

表4:碳化硅MOSFET每年為每個(gè)任務(wù)檔案所省下的能源和成本

6.結(jié)論

本文針對(duì)採(cǎi)用1200 V硅基IGBT和碳化硅MOSFET之工業(yè)傳動(dòng)用反相器,進(jìn)行了效能基準(zhǔn)測(cè)試。內(nèi)容還特別探討馬達(dá)繞線(xiàn)和軸承保護(hù)所導(dǎo)致在電壓變動(dòng)比率方面的技術(shù)限制,接著在20 kW工業(yè)傳動(dòng)條件下,針對(duì)上述技術(shù)與限制進(jìn)行比較。結(jié)果顯示,使用碳化硅MOSFET取代硅基IGBT可大幅增加電力能源效率,即使換流速度限制在5 V/ns。比較成本后也發(fā)現(xiàn),在特定的假設(shè)條件下,這種做法可減少一般工業(yè)傳動(dòng)應(yīng)用的能源費(fèi)用支出。


上一頁(yè) 1 2 下一頁(yè)

關(guān)鍵詞: MOSEFT FWD ST IGBT

評(píng)論


相關(guān)推薦

技術(shù)專(zhuān)區(qū)

關(guān)閉