“你是我的眼”——激光雷達(dá)主動三維成像系統(tǒng)
隨著人工智能的發(fā)展,汽車自動駕駛不再是想象中的場景,你知道汽車是如何看清周圍的環(huán)境,實現(xiàn)自主駕駛嗎?這就不得不提到機(jī)器人的“眼睛”——三維成像激光雷達(dá)。激光雷達(dá)顧名思義,就是一種借助激光對物體距離進(jìn)行測量的主動探測遙感設(shè)備,與微波雷達(dá)類似,人們最早是從蝙蝠身上找到的靈感。激光雷達(dá)與它們相比測距精度更高,并且可以看到物體更加細(xì)節(jié)的特征,因而在生活中有著非常廣泛的應(yīng)用。
本文引用地址:http://m.butianyuan.cn/article/202009/417783.htm上世紀(jì)六七十年代,發(fā)達(dá)國家就已經(jīng)開始了激光雷達(dá)在三維成像領(lǐng)域的研究。如果把激光雷達(dá)對物體的成像比作盲人摸象,那么我們可以把“摸象”的過程分成兩步:首先是知道“象”的位置和距離,然后通過在“象”身上不斷摸索來確定“象”的樣子。而這也就對應(yīng)著三維成像激光雷達(dá)工作的兩大部分:激光距離測量過程和激光三維成像過程。激光雷達(dá)的測距方法有哪些呢?
就像大家所熟知的那樣,路程=速度×?xí)r間,激光雷達(dá)的測距過程也離不開這個公式。在空間中,激光的飛行速度是已知的3×108 m/s?,F(xiàn)有的激光雷達(dá)測距方法有很多種,除了直接測量激光脈沖飛行時間的方式,還可以通過對發(fā)射激光信號的幅度、頻率等參數(shù)進(jìn)行調(diào)制來間接的獲取目標(biāo)的距離信息。
利用激光雷達(dá)進(jìn)行距離測量,針對不同的應(yīng)用場景,我們要對癥下藥。
“激光測距里的千里眼”——脈沖激光測距法
脈沖激光具有峰值功率大的特點,這使它能夠在空間中傳播很長的距離,所以脈沖激光測距法可以對很遠(yuǎn)的目標(biāo)進(jìn)行測量。很遠(yuǎn)是有多遠(yuǎn)呢?目前人類歷史上最遠(yuǎn)的激光測量距離是地球和月亮之間的距離,他們采用的就是脈沖激光測距法。自2019年6月以來,我國天琴計劃團(tuán)隊已經(jīng)多次成功實現(xiàn)地月距離的測量,通過對脈沖飛行時間的精確計時,得到地月距離在351,000
km到406,000 km(橢圓軌道)之間波動。
“明察秋毫”的相位激光測距法
對那些對測距精度要求較高的應(yīng)用場景,如“空間交匯對接”中最后的接近段等,厘米級的測距精度已經(jīng)不能滿足它們的要求,這時候需要用相位激光測距的方法來測量。
“追著你測”的調(diào)頻連續(xù)波激光測距法
如果目標(biāo)是運動的,除了距離,我們還想知道目標(biāo)的速度時,該怎么辦呢?隨著航天技術(shù)的發(fā)展,保證航天器能夠安全的軟著陸成為一個重要的問題。單次脈沖激光測距和相位測距法只能獲得目標(biāo)的距離信息,若要獲得其速度至少需要兩次測量結(jié)果并結(jié)合兩次測量的時間間隔來計算。而這樣計算出來的平均速度的精度遠(yuǎn)低于激光多普勒測速雷達(dá)的測速精度。
調(diào)頻連續(xù)波激光測距方法可以解決這個問題,它不僅可以測距,還可以測速,因此可以應(yīng)用于相對運動速度較高的目標(biāo)測距。美國國家航天局NASA于2006年提出的用于重返月球和探測火星的自主著陸和障礙規(guī)避計劃(ALHAT計劃)正是采用了這種測距方法,該雷達(dá)于2008年和2010年進(jìn)行了飛行試驗,取得了不錯的效果。
激光雷達(dá)是如何成像的?
“盲人摸象”走完第一步,我們已經(jīng)成功的找到了“大象”的位置和距離,下一步我們該如何知道“大象”的樣子呢?這就是激光雷達(dá)的成像過程要解決的問題。簡單的理解,激光雷達(dá)三維成像其實就是在測出目標(biāo)各點距離的基礎(chǔ)上,同時獲得每個點與雷達(dá)之間的水平角和俯仰角,這樣我們就得到目標(biāo)三維信息了。按照目標(biāo)各點三維信息的獲取方式,激光成像體制主要有掃描式激光成像和面陣式激光成像。
“讓激光動起來”的掃描三維成像
掃描式激光成像方法目前已經(jīng)相當(dāng)成熟,在地形測量、工程建設(shè),汽車導(dǎo)航領(lǐng)域有著非常廣泛的應(yīng)用。它由單點激光測距配合快速光束掃描器件來實現(xiàn)對目標(biāo)上各點距離信息的獲取,再將這些距離信息與該點對應(yīng)光束指向的方位角和俯仰角結(jié)合得到目標(biāo)的距離-角度-角度圖像(Rang-Angle-Angle),又稱為三維圖像。
美國國家航天局NASA為測量冰蓋質(zhì)量平衡、冰蓋高度和海冰厚度以及陸地地形和植被特征等研制了ICESat星載激光雷達(dá)成像系統(tǒng)。ICESat于2003年1月13日發(fā)射成功,它在激光測距的基礎(chǔ)上,利用衛(wèi)星平臺的運動,實現(xiàn)對地表的單點掃描成像。在軌工作7年后,ICESat于2010年完成了對地球表面絕大部分地區(qū)的激光測繪工作。
掃描三維成像也被廣泛的用在汽車自動駕駛里。為了提高掃描的速率,市面上的車載激光雷達(dá)往往采用發(fā)射激光陣列的形式進(jìn)行掃描成像,這也被稱為多線束成像。其中Velodyne公司以360°旋轉(zhuǎn)的多線束激光雷達(dá)為主要產(chǎn)品,掃描線數(shù)達(dá)到了16線、32線及64線,是機(jī)械旋轉(zhuǎn)加多線掃描成像的典型代表,技術(shù)較為成熟。“一眼就能看穿你”的面陣三維成像
除了這種掃描遍歷目標(biāo)的成像方式,有沒有其他更加便捷,“啪”的一下就能得到目標(biāo)三維信息的成像方式呢?
有!
面陣式激光成像就是為此產(chǎn)生的一種快速成像方式。相比于掃描式激光成像需要逐點掃描測距的方式,面陣式激光成像它僅需發(fā)射一次激光脈沖即可以得到一整幅三維圖像。如果把掃描成像的方式比作用手指摸索目標(biāo)全貌,那么面陣成像就像是用巨大的手掌直接覆蓋目標(biāo)。同時,因為沒有掃描結(jié)構(gòu),所以面陣式系統(tǒng)整機(jī)結(jié)構(gòu)更加緊湊,體積更小。按照探測器的不同,面陣三維成像大致可以分為APD陣列和CCD相機(jī)兩種探測方式。
APD陣列的每個像元都是一個單點激光測距的單元,能夠直接給出與其對應(yīng)的距離信息。上世紀(jì)90年代后期,美國麻省理工學(xué)院林肯實驗室(MIT/LL)用蓋格模式下的雪崩光電二極管焦平面陣列(GM-APD FPAs)作為面陣三維成像激光雷達(dá)的探測器,其陣列的規(guī)模日益增大,從4×4、8×8到128×32乃至256×256。2003年MIT/LL對地面目標(biāo)進(jìn)行了機(jī)載三維成像試驗和機(jī)載植被穿透實驗,實驗表明采用焦平面探測器的面陣式三維成像激光雷達(dá)可以快速獲取目標(biāo)三維圖像,有效地識別林中隱蔽的坦克。
2018年,中國科學(xué)院光電技術(shù)研究所提出了基于偏振調(diào)制的激光三維成像方法,利用EMCCD相機(jī)作為探測器,提高了系統(tǒng)的探測靈敏度。同時,利用偏振調(diào)制技術(shù)從EMCCD拍攝圖像的灰度信息得到脈沖飛行的時間,從而實現(xiàn)距離的測量。該系統(tǒng)僅需發(fā)射一次脈沖即可獲得一幅三維圖像,因而可以用于高速運動平臺或高動態(tài)目標(biāo)的三維成像。面陣三維成像雖然成像速度快,不需要掃描結(jié)構(gòu),但是它將系統(tǒng)接收的回波功率平均分布到每個探測像元上,探測像元越多,分散到每個像元上的回波功率就越低,因此面陣成像系統(tǒng)的測距范圍遠(yuǎn)小于單點掃描測距系統(tǒng),一般僅適用于較近距離的成像探測。
激光雷達(dá)三維成像系統(tǒng)與傳統(tǒng)的被動相機(jī)相比不僅可以獲得目標(biāo)的強(qiáng)度信息還有更加豐富的距離信息;與微波雷達(dá)成像系統(tǒng)相比又具有全天時、測量精度高和分辨率高的特點,因而在現(xiàn)代成像領(lǐng)域發(fā)揮著越來越重要的作用。隨著現(xiàn)代科技和社會的發(fā)展,相信三維成像激光雷達(dá)在未來會有更大的應(yīng)用前景!
來源:中國科學(xué)院光電技術(shù)研究所
評論