新聞中心

AOI+AI+3D 檢測(cè)鐵三角成形

—— 自動(dòng)光學(xué)檢測(cè)新趨勢(shì)來(lái)臨
作者: 時(shí)間:2022-10-06 來(lái)源:CTIMES 收藏

疫情突顯產(chǎn)業(yè)供應(yīng)鏈中斷和制造業(yè)缺工問(wèn)題,加上少量多樣需求成趨勢(shì),迫使制造業(yè)快速轉(zhuǎn)型,走向更自動(dòng)化、數(shù)字化的智能化方向。因此,各產(chǎn)業(yè)對(duì)()技術(shù)的需求更為殷切。

疫情突顯產(chǎn)業(yè)供應(yīng)鏈中斷和制造業(yè)缺工問(wèn)題,加上少量多樣需求成趨勢(shì),迫使制造業(yè)快速轉(zhuǎn)型,走向更自動(dòng)化、數(shù)字化的智能化方向。導(dǎo)入自動(dòng)化及的過(guò)程中,傳統(tǒng)人力逐漸被取代,也改變產(chǎn)線人員配置的傳統(tǒng)生態(tài),其中,可以確保產(chǎn)線及產(chǎn)品質(zhì)量的自動(dòng)檢測(cè)儀器不僅發(fā)揮精準(zhǔn)有效的優(yōu)勢(shì),還能針對(duì)缺陷或瑕疵及時(shí)修復(fù)、舍棄,降低不必要的時(shí)間成本與人力成本,快速穩(wěn)定且一致的檢測(cè)結(jié)果大幅提高制程的完整性及正確性,因此,各產(chǎn)業(yè)對(duì)(Automatic Optical Inspection;)技術(shù)的需求更為殷切。

傳統(tǒng)需要再進(jìn)化
AOI是高速、高精度光學(xué)影像檢測(cè)系統(tǒng),以機(jī)器視覺(jué)做為檢測(cè)標(biāo)準(zhǔn)技術(shù),改善傳統(tǒng)人力使用光學(xué)儀器執(zhí)行檢測(cè)的缺點(diǎn),常見(jiàn)應(yīng)用范疇包含高科技產(chǎn)業(yè)研發(fā)、制造業(yè)品管等,電力、機(jī)器人控制、生物醫(yī)學(xué)、醫(yī)療、衛(wèi)星遙測(cè)、宇宙探測(cè)、國(guó)防、汽車(chē)工業(yè)、半導(dǎo)體、環(huán)保等領(lǐng)域也能看到AOI的諸多應(yīng)用。

非接觸AOI技術(shù)是利用光學(xué)儀器取得成品樣態(tài),透過(guò)計(jì)算機(jī)圖像處理技術(shù)檢查出異?;蜩Υ?,技術(shù)領(lǐng)域包含光學(xué)照明技術(shù)、量測(cè)鏡頭技術(shù)、定位量測(cè)技術(shù)、圖像處理技術(shù)、自動(dòng)化技術(shù)、電子電路測(cè)試技術(shù)等,透過(guò)光學(xué)照明(如CCD攝影機(jī)、光學(xué)鏡頭)、機(jī)器人接口與驅(qū)動(dòng)裝置(如機(jī)器手臂)、電控系統(tǒng)(如PC Base控制主機(jī))、視覺(jué)軟件(如算法、圖像處理軟件)的串聯(lián),取得結(jié)果。藉由AOI針對(duì)缺陷或瑕疵的及時(shí)修復(fù)、調(diào)整或舍棄,大幅降低不必要的成本支出。

不過(guò),傳統(tǒng)AOI品檢容易產(chǎn)生過(guò)篩率偏高、上線時(shí)間長(zhǎng)、不夠彈性、無(wú)法解決光學(xué)光影干擾等問(wèn)題。舊式的光學(xué)檢測(cè)是透過(guò)沒(méi)有學(xué)習(xí)功能的傳統(tǒng)算法進(jìn)行,過(guò)篩率非常高,業(yè)者需要額外花費(fèi)時(shí)間進(jìn)行二次人工篩檢分類(lèi),無(wú)形中提高成本支出。傳統(tǒng)AOI系統(tǒng)在每一次上線時(shí)要不斷調(diào)整設(shè)定,無(wú)法彈性調(diào)整生產(chǎn)內(nèi)容,難以滿(mǎn)足彈性化、客制化生產(chǎn)需求。

此外,AOI檢測(cè)只能以設(shè)定好的參數(shù)標(biāo)準(zhǔn)進(jìn)行判斷,須要先行定義瑕疵樣本,再透過(guò)樣本進(jìn)行篩檢。如果能導(dǎo)入,可以大幅改善AOI的不足,如優(yōu)化AOI影像判讀,降低誤判率,不僅可以提高AOI品檢的可靠性,還能減少二次人工檢驗(yàn)成本;智能目視檢測(cè)可以自動(dòng)判斷產(chǎn)品外觀,結(jié)合影像數(shù)據(jù)劃分重點(diǎn)檢查區(qū);產(chǎn)線可視化可以提供機(jī)臺(tái)實(shí)時(shí)監(jiān)控,記錄影像數(shù)據(jù)。

以金屬工件檢測(cè)為例,因?yàn)閷?duì)象表面會(huì)反光,檢測(cè)時(shí)要反復(fù)轉(zhuǎn)動(dòng),檢驗(yàn)人員容易疲累,效率難以提升,加上人員素質(zhì)與主觀認(rèn)知等差異,導(dǎo)致過(guò)篩率偏高;汽機(jī)車(chē)零組件的煞車(chē)碟盤(pán)常有刮痕、裂痕、撞傷、污漬等細(xì)微瑕疵,透過(guò)機(jī)器視覺(jué)加上演算,很容易檢測(cè)出瑕疵。

AOI導(dǎo)入AI趨勢(shì)不可擋
未來(lái),AOI導(dǎo)入AI智能制造是企業(yè)生存關(guān)鍵,預(yù)估2024年全球智能制造市場(chǎng)規(guī)模上看4,000億美元,年復(fù)合成長(zhǎng)率達(dá)10.1%,在此趨勢(shì)下,制造業(yè)更需要智能化的檢測(cè)系統(tǒng),應(yīng)用AI技術(shù)輔助AOI設(shè)備進(jìn)行后續(xù)篩檢優(yōu)化即為一例。工研院產(chǎn)科國(guó)際所數(shù)據(jù)指出,2022年全球AOI檢測(cè)系統(tǒng)市場(chǎng)規(guī)模預(yù)測(cè)達(dá)10億美元,2020年至2025年間的年復(fù)合成長(zhǎng)率達(dá)17.7%。在工業(yè)4.0及智能制造潮流驅(qū)動(dòng)下,愈來(lái)愈多制造領(lǐng)域采用AOI搭配AI的整合應(yīng)用,其中以半導(dǎo)體領(lǐng)域最為積極。

圖片.png 
圖1 : 全球AOI技術(shù)的市場(chǎng)規(guī)模。(source:工研院產(chǎn)科國(guó)際所;2022年3月)

雖然生產(chǎn)過(guò)程中可以透過(guò)物聯(lián)網(wǎng)(IoT)和數(shù)字系統(tǒng)軟件工具結(jié)合OT與IT,達(dá)到搜集數(shù)據(jù)、實(shí)時(shí)人機(jī)協(xié)作等目的,但是,人力目視檢測(cè)進(jìn)料、檢驗(yàn)、成品組裝、入庫(kù)、出貨檢驗(yàn)等流程容易產(chǎn)生缺點(diǎn),需要AOI搭配AI智能影像辨識(shí)改善這些缺點(diǎn)。除了缺工、工作人員老化等問(wèn)題,人工檢測(cè)常因個(gè)人經(jīng)驗(yàn)的良莠不齊(如手感差異、標(biāo)準(zhǔn)不一)導(dǎo)致質(zhì)量與產(chǎn)量不均,長(zhǎng)時(shí)間用眼容易疲勞,很難維持長(zhǎng)期的標(biāo)準(zhǔn)化和數(shù)據(jù)化統(tǒng)一,容易影響產(chǎn)能輸出,此外,以人工記錄生產(chǎn)產(chǎn)量、檢驗(yàn)狀況也容易產(chǎn)生疏漏及信息延遲等現(xiàn)象,增加客訴率、質(zhì)量不良率與成本耗損率。

至于傳統(tǒng)的AOI檢測(cè)設(shè)備需要控制環(huán)境、光源及拍攝角度等細(xì)節(jié),量測(cè)目標(biāo)特征也要相當(dāng)明確,才能發(fā)揮AOI機(jī)器篩檢的質(zhì)量,一旦檢測(cè)新設(shè)計(jì)或新產(chǎn)品時(shí),自動(dòng)光學(xué)檢測(cè)流程需要重新設(shè)置,相對(duì)耗費(fèi)成本。

AI具有深度學(xué)習(xí)(Deep Learning)技術(shù)及模型訓(xùn)練,可以很好地被應(yīng)用于AOI瑕疵檢測(cè)領(lǐng)域,如雷射焊接自動(dòng)控制、金屬瑕疵與銹蝕檢測(cè)、紡織品花紋瑕疵檢測(cè)等,只要搜集大量預(yù)先處理好的影像并標(biāo)注影像種類(lèi)(如瑕疵種類(lèi)),透過(guò)AI深度學(xué)習(xí)與模型訓(xùn)練搭配AOI,不僅可以快速上線,還能自主學(xué)習(xí),將人工檢測(cè)經(jīng)驗(yàn)?zāi)P突?,利用算法分析判斷,建立在線檢測(cè)數(shù)據(jù)庫(kù),透過(guò)影像判讀瑕疵,不需等最后一步才做終檢,這樣的流程可以達(dá)到實(shí)時(shí)檢測(cè)、及時(shí)修正的效果,發(fā)現(xiàn)良率下降時(shí)也可以立即調(diào)整產(chǎn)線、設(shè)備及人力,避免成本的浪費(fèi)。

另一方面,AI將人工檢測(cè)經(jīng)驗(yàn)?zāi)P突罄盟惴ǚ治雠袛啵粌H相當(dāng)靈活有彈性,可以提高精準(zhǔn)度與持續(xù)性,還可以降低對(duì)人工的依賴(lài)、降低人員的工作負(fù)擔(dān),并且大幅提高生產(chǎn)效率。因此,近年來(lái)AOI結(jié)合AI已逐漸成為主流標(biāo)配。

工研院產(chǎn)科國(guó)際所執(zhí)行產(chǎn)業(yè)技術(shù)基盤(pán)研究與知識(shí)服務(wù)計(jì)劃產(chǎn)業(yè)分析師黃仲宏,以臺(tái)灣發(fā)展逾40年的印刷電路板(PCB)產(chǎn)業(yè)為例,說(shuō)明AOI的進(jìn)化與需求刻不容緩。首先是5G的加速推展與應(yīng)用帶動(dòng)產(chǎn)業(yè)發(fā)展及變化,應(yīng)用上必須考慮更多,如高頻訊號(hào)損失、傳輸速度、模塊整合度、系統(tǒng)穩(wěn)定度與功耗等細(xì)節(jié),而5G硬件系統(tǒng)的零組件規(guī)格比4G高出許多,帶動(dòng)基頻芯片、印刷電路板(PCB)、天線、射頻前端及散熱組件等零組件的發(fā)展。

由于5G高速通訊、低延遲、高布建密度的特性,帶動(dòng)PCB朝面積擴(kuò)大、層數(shù)增加、線路設(shè)計(jì)復(fù)雜等趨勢(shì)發(fā)展,為達(dá)輕薄短小、高效運(yùn)算(HPC)裝置微型化等需求,PCB業(yè)者以高密度連接板(Any-Layer HDI)、軟硬結(jié)合板、IC載板等技術(shù)因應(yīng),希望藉由體積優(yōu)勢(shì),開(kāi)發(fā)更多應(yīng)用方式。當(dāng)PCB產(chǎn)業(yè)趨勢(shì)因?yàn)榧?xì)線距、多層數(shù)等技術(shù)帶動(dòng)產(chǎn)品升級(jí),藉由AI加速制程及瑕疵檢驗(yàn)更加刻不容緩。

此外,Mini LED顯示器加速落地,磊晶廠產(chǎn)出的磊晶波長(zhǎng)、電性等規(guī)格差異大,需仰賴(lài)設(shè)備廠的檢測(cè)與分選才能提供高一致性的LED芯片,這些需求也會(huì)帶動(dòng)AOI技術(shù)加速改變。

圖片.png 
圖2 : 異質(zhì)封裝技術(shù)等趨勢(shì)帶動(dòng)AOI朝極精密檢測(cè)發(fā)展,比方檢查晶圓狀況與金屬殘留。(source:CTIMES資料照)

若以半導(dǎo)體為例,半導(dǎo)體制程已進(jìn)入5奈米、7奈米微縮,技術(shù)難度愈來(lái)愈高,而先進(jìn)制程趨勢(shì)是芯片朝多層堆棧發(fā)展,如此可以使芯片體積更小、更省電、更有效能。進(jìn)化中的堆棧技術(shù)、異質(zhì)封裝技術(shù)等趨勢(shì)帶動(dòng)AOI朝極精密檢測(cè)發(fā)展,比方檢查晶圓狀況與金屬殘留,提升良率或改善問(wèn)題。

舊式瑕疵檢驗(yàn)以人眼進(jìn)行檢測(cè),有主觀判斷標(biāo)準(zhǔn)不一、眼睛疲勞不易持續(xù)等干擾因素可能降低精準(zhǔn)度,因此,導(dǎo)入AI瑕疵檢測(cè)有其必要性,結(jié)合機(jī)器視覺(jué)與AI技術(shù)有助晶圓電路缺陷分析,開(kāi)發(fā)高速精確電路瑕疵檢測(cè),大幅縮短檢測(cè)時(shí)間,提升晶圓產(chǎn)能及良率。

隨著異質(zhì)芯片整合制程需求大增,封裝技術(shù)更為重要,封裝成為臺(tái)積電、Intel、三星等國(guó)際大廠的布局重點(diǎn),臺(tái)灣主要封測(cè)廠也鎖定研發(fā)系統(tǒng)級(jí)封裝(SiP)及整合天線封裝(AiP),帶動(dòng)打線接合(Wire Bonding)的自動(dòng)光學(xué)檢測(cè)需求。

極精密檢測(cè) 3D AOI占有一席之地
一般來(lái)說(shuō),需要使用AOI篩檢的產(chǎn)線多半具有相對(duì)大的產(chǎn)量或相對(duì)高的產(chǎn)品品管要求,而且多與高單價(jià)產(chǎn)品有關(guān),如PCB、半導(dǎo)體、手機(jī)零件、醫(yī)療器材等產(chǎn)業(yè),對(duì)于這些生產(chǎn)線來(lái)說(shuō),維持并提升良率非常重要。

AOI并非單純地檢查、排除瑕疵品,也扮演資料搜集者角色,只要善用AOI取得的大量瑕疵數(shù)據(jù),經(jīng)過(guò)合理分析、歸納,就可以找出制程或產(chǎn)品不良原因。

圖片.png 
圖3 : Mini LED顯示器加速落地,需仰賴(lài)設(shè)備廠的檢測(cè)與分選才能提供高一致性的LED芯片,這些需求也會(huì)帶動(dòng)AOI技術(shù)加速改變。(source:corbeauinnovation)

隨著愈來(lái)愈多產(chǎn)業(yè)采用AI搭配AOI光學(xué)檢測(cè)的整合應(yīng)用,導(dǎo)入AI AOI自動(dòng)化質(zhì)量檢測(cè)升級(jí),臺(tái)灣業(yè)者也加速瞄準(zhǔn)AOI產(chǎn)業(yè)新藍(lán)海,如今年9月的「SEMICON Taiwan 2022國(guó)際半導(dǎo)體展」中,晶彩科技即展示AI AOI解決方案,透過(guò)全新開(kāi)發(fā)的AI實(shí)時(shí)檢量測(cè)功能,同時(shí)進(jìn)行Carrier上芯片外觀缺陷檢測(cè)及偏移/旋轉(zhuǎn)/傾斜檢知與量測(cè),大幅提升缺陷檢出命中率并有效降低誤檢率。

不少AOI廠商是以規(guī)則系統(tǒng)(rule-based)做缺陷檢測(cè),傳統(tǒng)方法檢測(cè)不好才會(huì)導(dǎo)入AI,目前已逐漸進(jìn)展到在少量多樣、快速變化的產(chǎn)品檢測(cè)中導(dǎo)入AI算法,應(yīng)用AI中的深度學(xué)習(xí)技術(shù)。隨著先進(jìn)制程中的AOI技術(shù)如硅晶圓檢測(cè)、PCB的IC載板檢測(cè)、半導(dǎo)體封裝測(cè)試檢測(cè)、Mini LED檢測(cè)等日益受到重視。

工研院產(chǎn)科國(guó)際所執(zhí)行產(chǎn)業(yè)技術(shù)基盤(pán)研究與知識(shí)服務(wù)計(jì)劃產(chǎn)業(yè)分析師黃仲宏預(yù)期,3D AOI技術(shù)將占未來(lái)市場(chǎng)大宗,線寬、線距縮小能有效增加封裝的腳位及縮短訊號(hào)延遲時(shí)間,提升整體系統(tǒng)效能。由于高階應(yīng)用的電子零件需求與PCB復(fù)雜度增加(線距縮小),AOI難度隨之提升,但是未來(lái)線寬線徑小于5um的AOI檢測(cè)會(huì)有一定的市場(chǎng)需求。

另一方面,隨著3D堆棧技術(shù)、異質(zhì)封裝技術(shù)不斷演進(jìn),AOI未來(lái)將朝極精密檢測(cè)方向發(fā)展,如碳化硅(SiC)晶圓檢測(cè)、AiP(Antenna-in-Package)載板檢測(cè)、半導(dǎo)體先進(jìn)封裝測(cè)試檢測(cè)、Mini LED的AOI設(shè)備等,帶動(dòng)全球AOI市場(chǎng)蓬勃發(fā)展。

本文引用地址:http://m.butianyuan.cn/article/202210/438815.htm


評(píng)論


相關(guān)推薦

技術(shù)專(zhuān)區(qū)

關(guān)閉