新聞中心

EEPW首頁(yè) > 智能計(jì)算 > 設(shè)計(jì)應(yīng)用 > 微軟研究院劉鐵巖:AI for Science:追求人類(lèi)智能最光輝的一面|MEET 2023

微軟研究院劉鐵巖:AI for Science:追求人類(lèi)智能最光輝的一面|MEET 2023

作者: 時(shí)間:2023-01-06 來(lái)源:量子位 收藏

過(guò)去一年里,  for Science技術(shù)成果集中爆發(fā),在生物醫(yī)藥、材料、物理、化學(xué)、甚至數(shù)學(xué)上發(fā)揮出越來(lái)越重要的作用,不少學(xué)界、業(yè)內(nèi)人士已經(jīng)看到了在自然科學(xué)領(lǐng)域的巨大潛力。

本文引用地址:http://m.butianyuan.cn/article/202301/442431.htm

for Science背后的價(jià)值到底有些什么?

帶著這樣的追問(wèn),微軟研究院科學(xué)智能中心亞洲區(qū)負(fù)責(zé)人、微軟亞洲研究院副院長(zhǎng) 劉鐵巖和其帶領(lǐng)的團(tuán)隊(duì),進(jìn)行了不倦追尋。

去年,劉鐵巖團(tuán)隊(duì)發(fā)布了用于分子模擬的 Graphormer模型。在MEET2023智能未來(lái)大會(huì)上,劉鐵巖更是全面介紹了他對(duì)于AI4Science的理解,以及AI4Science如何作為科學(xué)發(fā)現(xiàn)的第五范式,和經(jīng)驗(yàn)范式、理論范式、計(jì)算范式、數(shù)據(jù)驅(qū)動(dòng)范式互相促進(jìn)、水乳交融,共同推進(jìn)科學(xué)研究的飛速發(fā)展。

為了完整體現(xiàn)劉鐵巖的分享及思考,在不改變?cè)獾幕A(chǔ)上,量子位對(duì)他的演講內(nèi)容進(jìn)行了編輯整理。

關(guān)于MEET智能未來(lái)大會(huì):MEET大會(huì)是由量子位主辦的智能科技領(lǐng)域頂級(jí)商業(yè)峰會(huì),致力于探討前沿科技技術(shù)的落地與行業(yè)應(yīng)用。今年共有數(shù)十家主流媒體及直播平臺(tái)報(bào)道直播了MEET2023大會(huì),吸引了超過(guò)300萬(wàn)行業(yè)用戶(hù)線(xiàn)上參會(huì),全網(wǎng)總曝光量累積超過(guò)2000萬(wàn)。

演講要點(diǎn)

  • 人工智能還沒(méi)能反映出人類(lèi)智能里最光輝的一面—— 認(rèn)識(shí)世界和改造世界 。

  • AI for Science值得稱(chēng)為 第五范式 。

  • 利用AI手段更深一步的目的是修正對(duì)已有物理方程的理解,發(fā)現(xiàn)新的科學(xué)規(guī)律, 實(shí)現(xiàn)科學(xué)研究的閉環(huán) 。

  • AI for Science將會(huì) 對(duì)自然科學(xué)產(chǎn)生巨大影響 ,尤其在解釋生命奧秘、以及保障環(huán)境可持續(xù)發(fā)展方面。

(以下為劉鐵巖演講全文)

AI for Science:第五范式

最近10年里,AI飛速發(fā)展,在很多任務(wù)上已經(jīng)和人類(lèi)媲美。而且近年來(lái),以GPT-3、DALLE2為代表的大模型讓人驚艷。

比如大家現(xiàn)在非常關(guān)注的ChatGPT,讓我們覺(jué)得 通用人工智能離日常生活越來(lái)越近。但這些成果主要集中在感知和認(rèn)知層面,并沒(méi)有反映出人類(lèi)智能里最光輝的一面,即認(rèn)識(shí)世界和改造世界。

如果戴上科學(xué)的顯微鏡,就會(huì)發(fā)現(xiàn)我們之所以成為人類(lèi)、成為生物,是億萬(wàn)個(gè)細(xì)胞、甚至是更多微觀粒子相互作用的結(jié)果;而如果戴 上科學(xué)的望遠(yuǎn)鏡,就會(huì)發(fā)現(xiàn)我們?nèi)祟?lèi)不過(guò)是地球上百萬(wàn)物種之一、而地球在蒼茫宇宙里也同樣是不值一提的滄海一粟。

所以,無(wú)論是從微觀還是宏觀角度看,我們?nèi)祟?lèi)自身都是非常渺小的。我們 不應(yīng)該讓AI一味地模擬語(yǔ)音、視覺(jué)、語(yǔ)言等人類(lèi)自身的基本技能,而是要讓AI擁有和人類(lèi)一樣認(rèn)識(shí)世界和改造世界的勇氣和能力。而認(rèn)識(shí)世界和改造世界正是千百年來(lái),自然科學(xué)研究的終極目標(biāo)。

我在微軟的前同事Jim Gray曾經(jīng)寫(xiě)過(guò)一本書(shū),對(duì)科學(xué)發(fā)現(xiàn)四個(gè)基本范式做了深刻的總結(jié)。

第一個(gè)范式叫做 經(jīng)驗(yàn)范式,基于經(jīng)驗(yàn)的觀察, 是天才科學(xué)家對(duì)萬(wàn)物萬(wàn)象的總結(jié)。比如著名的天文學(xué)家開(kāi)普勒,他通過(guò)觀察總結(jié)出天體運(yùn)行的規(guī)律:“所有的行星圍繞太陽(yáng)運(yùn)行的軌道都是橢圓的,太陽(yáng)處在所有橢圓的公共焦點(diǎn)上”。

第二個(gè)范式是 理論范式,指數(shù)學(xué)家 對(duì)經(jīng)驗(yàn)進(jìn)行數(shù)學(xué)抽象和推演,比如用于描述經(jīng)典力學(xué)的牛頓運(yùn)動(dòng)方程,用來(lái)描述電場(chǎng)磁場(chǎng)關(guān)系的麥克斯韋爾方程等。

第三個(gè)范式是 計(jì)算范式,隨著計(jì)算機(jī)的發(fā)明,人們開(kāi)始有能力 求解復(fù)雜的物理方程。比如,通過(guò)有限元或者有限差分方式求解流體方程,從而有助于人類(lèi)對(duì)于天氣預(yù)報(bào)進(jìn)行精準(zhǔn)預(yù)測(cè)。

第四個(gè)范式是 數(shù)據(jù)驅(qū)動(dòng)的范式,這個(gè)過(guò)程中 ML(機(jī)器學(xué)習(xí))扮演著非常重要的角色,人們使用ML方法來(lái)分析數(shù)據(jù),尋找規(guī)律,并進(jìn)行預(yù)測(cè)。

最近這幾年,大家開(kāi)始關(guān)注的一種新的范式,叫做 AI for Science,它是前四種范式的有機(jī)結(jié)合,發(fā)揮了經(jīng)驗(yàn)和理論各自的特長(zhǎng),又把AI和計(jì)算科學(xué)融合在一起。AI for Science是對(duì)科學(xué)發(fā)現(xiàn)更全面的認(rèn)知,因此我們稱(chēng)之為科學(xué)發(fā)現(xiàn)的 第五范式。

為了更好地理解AI for Science,我們可以從如圖的公式講起。

第一、對(duì)于物理世界 (綠色的X),我們可以利用理論科學(xué)對(duì)它進(jìn)行大體的描述,并且可以用AI的手段來(lái)加速這些理論方程的求解和推演。這對(duì)應(yīng)了黃色的X(θ)表示的部分,可以看成AI版本的第三范式。

第二、我們需要承認(rèn),我們 在科學(xué)方面的知識(shí)仍然非常有限,已有的理論還不能完美解釋所有的科學(xué)現(xiàn)象。換句話(huà)說(shuō),我們承認(rèn)物理方程的解X(θ)和實(shí)際物理世界X之間存在殘差ε,這個(gè)殘差表達(dá)的是現(xiàn)有物理方程的邊界,可以用實(shí)驗(yàn)手段觀察,也可以為AI所利用,這就對(duì)應(yīng)了第四范式。當(dāng)然,這幾年AI領(lǐng)域的新發(fā)展,比如RL (強(qiáng)化學(xué)習(xí))、DL (深度學(xué)習(xí))、大模型等等,會(huì)為第四范式提供新的加持。

第三、通過(guò)AI手段從數(shù)據(jù)出發(fā),目的不僅僅是為了發(fā)掘一些特定的結(jié)果,也可以進(jìn)一步幫助我們 修正對(duì)已有物理方程的理解, 豐富我們的科學(xué)知識(shí),讓我們有機(jī)會(huì)發(fā)現(xiàn)新的科學(xué)規(guī)律,這樣就最終能夠?qū)崿F(xiàn)科學(xué)研究的閉環(huán),這對(duì)應(yīng)了AI版本的第一范式和第二范式。

接下來(lái),我們就針對(duì)這三個(gè)方面進(jìn)行更加深入的討論,并介紹我們團(tuán)隊(duì)最新的研究成果。

形成科學(xué)發(fā)現(xiàn)的閉環(huán)

第一,如何用AI 求解物理方程?

傳統(tǒng)數(shù)值解法求解物理方程的效率是一個(gè)瓶頸。近年來(lái),人們開(kāi)始利用AI模型來(lái)對(duì)物理方程進(jìn)行更加高效的求解。AI模型的訓(xùn)練數(shù)據(jù)可以來(lái)源于傳統(tǒng)的數(shù)值解法,而一旦訓(xùn)練成功,在求解新的方程的時(shí)候就可以 節(jié)省大量的時(shí)間。

此外,近年來(lái)還出現(xiàn)了一種 physics informed training,甚至不需要提前生成訓(xùn)練數(shù)據(jù),只需要在訓(xùn)練的過(guò)程中,動(dòng)態(tài)驗(yàn)證AI模型的輸出是否滿(mǎn)足物理方程,定義損失函數(shù)即可,而驗(yàn)證方程比求解方程簡(jiǎn)單得多。

在這個(gè)方向上,我們團(tuán)隊(duì)有一些最新研究成果,如發(fā)表在NeurIPS 2021上的 Graphormer模型,和發(fā)表在國(guó)際期刊《流體物理》上的 Deep Vortex Net,分別在分子建模和氣象模擬領(lǐng)域取得了國(guó)際領(lǐng)先的結(jié)果。

第二,如何用AI從科學(xué)數(shù)據(jù)中發(fā)掘有效信息?

各種實(shí)驗(yàn)設(shè)備每年都產(chǎn)生海量數(shù)據(jù),但顯然不能靠人工有效處理;還有每年都有近150萬(wàn)篇論文發(fā)表,但任何科學(xué)家都沒(méi)有精力讀完。

我和團(tuán)隊(duì)提出利用AI方法來(lái)自動(dòng)分析高能粒子對(duì)撞的射流數(shù)據(jù),在國(guó)際期刊《High-energy Physics》上提出了 LorentzNet模型,將洛倫茲等變性構(gòu)建在模型之中,在新粒子發(fā)現(xiàn)領(lǐng)域取得了比前人顯著提高的精度。

我們還利用科學(xué)文獻(xiàn)訓(xùn)練了 SPT模型,對(duì)科學(xué)文獻(xiàn)信息的科學(xué)知識(shí)進(jìn)行抽取、總結(jié)、和預(yù)測(cè)。該模型近期在PubMed問(wèn)答任務(wù)上首次達(dá)到了人類(lèi)專(zhuān)家的水準(zhǔn)。

第三,如何從實(shí)驗(yàn)數(shù)據(jù)出發(fā),用AI發(fā)現(xiàn)新的物理方程,形成科學(xué)發(fā)現(xiàn)的閉環(huán)。

比如物理的守恒定律,一旦實(shí)驗(yàn)數(shù)據(jù)不滿(mǎn)足守恒性,往往暗示著一些新物理規(guī)律的存在。我們團(tuán)隊(duì)設(shè)計(jì)了一個(gè)雙通道的AI模型,包含 一個(gè)基于拉格朗日神經(jīng)網(wǎng)絡(luò)的守恒通路和 一個(gè)基于標(biāo)準(zhǔn)神經(jīng)網(wǎng)絡(luò)的非守恒通路,可精準(zhǔn)地從實(shí)驗(yàn)數(shù)據(jù)中自發(fā)地學(xué)到很多已有規(guī)律。該工作發(fā)表在Physical Review上,受到了廣泛關(guān)注。

我們相信AI for Science將會(huì)對(duì)自然科學(xué)產(chǎn)生巨大影響,尤其在解釋生命奧秘以及保障環(huán)境可持續(xù)發(fā)展方面,都有很大的潛力。

沿著這兩個(gè)方面,我們進(jìn)行了很多探索,發(fā)表了一系列非常有意思的論文,如果大家感興趣可以參考一下。

為了更好地推動(dòng)AI for Science這個(gè)領(lǐng)域高速發(fā)展,今年7月,微軟研究院在全球成立了一個(gè)新的研究機(jī)構(gòu),我們稱(chēng)之為 Microsoft Research AI4Science或者是 微軟研究院科學(xué)智能中心。這個(gè)研究中心設(shè)立的目的就是利用AI對(duì)分子動(dòng)力學(xué)模擬、流體力學(xué)模擬等重要的科學(xué)計(jì)算工具來(lái)進(jìn)行顛覆式創(chuàng)新,從而推動(dòng)人類(lèi)關(guān)心的重大問(wèn)題的求解。

非常榮幸,我作為這個(gè)中心的 創(chuàng)始成員之一,帶著團(tuán)隊(duì)一起推動(dòng)AI for Science的研究。我們也真誠(chéng)地希望懷揣著科學(xué)夢(mèng)想的同事們能夠加入我們,一起探索科學(xué)的新邊界!



關(guān)鍵詞: AI

評(píng)論


相關(guān)推薦

技術(shù)專(zhuān)區(qū)

關(guān)閉