新聞中心

EEPW首頁 > 汽車電子 > 設(shè)計(jì)應(yīng)用 > 續(xù)航焦慮怎么破?高效率直流快充方案給你新靈感

續(xù)航焦慮怎么破?高效率直流快充方案給你新靈感

作者: 時(shí)間:2024-02-20 來源:安森美 收藏

充電時(shí)間是消費(fèi)者和企業(yè)評估購買電動(dòng)汽車 (EV)的一個(gè)主要考慮因素。為了縮短充電時(shí)間,業(yè)界正轉(zhuǎn)向采用直流充電樁 (DCFC)。DCFC繞過電動(dòng)汽車的車載充電器,直接向電池提供更高的功率,從而大大縮短充電時(shí)間。

本文引用地址:http://m.butianyuan.cn/article/202402/455523.htm


為了實(shí)現(xiàn)更快的充電速度、適配更高的電動(dòng)汽車電池電壓并提高整體能效,DCFC 必須在更高的電壓和功率水平下運(yùn)行。這給OEM帶來了挑戰(zhàn),必須設(shè)計(jì)出一種能夠優(yōu)化效率,同時(shí)不影響可靠性和安全性的架構(gòu)。


DCFC 集成了多種器件,包括用于輔助電源、感測、電源管理、連接和通信的器件。另外,為了滿足各種電動(dòng)汽車不斷發(fā)展的充電需求,必須采用靈活的制造方法,這也使設(shè)計(jì)變得更加復(fù)雜。


續(xù)航焦慮怎么破?高效率直流快充方案給你新靈感

圖1. DCFC中的主要模塊概覽


快速和超快速充電


圖2顯示了交流充電和直流充電之間的差異。對于交流充電(圖2左側(cè)),車載充電器 (OBC) 插入標(biāo)準(zhǔn)交流插座。OBC將交流電轉(zhuǎn)換為適當(dāng)?shù)闹绷麟姙殡姵爻潆?。對于直流充電(圖2右側(cè)),充電樁直接給電池充電。


續(xù)航焦慮怎么破?高效率直流快充方案給你新靈感

圖2.交流充電和直流充電概念圖 資料來源:Yolé Development


目前電動(dòng)汽車的 OBC 依賴交流充電,最大額定功率為 22 kW。直流充電繞過了 OBC,直接向電池輸送直流電,因此能提供高得多的功率,從 50 kW 到 400 kW 以上甚至更高。


由于這個(gè)原因,DCFC 常被稱為“快速”或“超快速”充電樁。如此高的充電速度和更大的便利性為電動(dòng)汽車帶來了更多的應(yīng)用和用例。例如,電動(dòng)汽車如果需要八小時(shí)才能充滿電,是不適合長途駕駛的,但借助超快速充電樁,電動(dòng)汽車可以在短暫的休息時(shí)間內(nèi)大量充電,增加車輛的續(xù)航里程,使其更加適合日常使用。因此,從現(xiàn)在到 2030 年,快速直流充電樁的復(fù)合年增長率預(yù)計(jì)將超過 30%(來源:Yolé Development)。


碳化硅 (SiC) 和功率集成模塊 (PIM) 技術(shù)的進(jìn)步,是促進(jìn)向更快速充電轉(zhuǎn)變的關(guān)鍵驅(qū)動(dòng)力。SiC 使 DCFC 能夠以更高的頻率運(yùn)行(因而效率也更高),同時(shí)以更快的速度提供更多功率。PIM 使 OEM 能夠快速將先進(jìn)的技術(shù)集成到緊湊、輕便的設(shè)備中,并實(shí)現(xiàn)出色的熱管理、可靠性和可制造性,從而加快 SiC 技術(shù)的普及。


DCFC 剖析


如圖 3 所示,直流充電樁主要包括兩級:AC-DC 級和后續(xù) DC-DC 級。AC-DC 級將來自電網(wǎng)的交流電轉(zhuǎn)換為直流電,而第二級確保以適合電池所需的電壓和電流水平提供功率。


續(xù)航焦慮怎么破?高效率直流快充方案給你新靈感

圖3. DCFC的架構(gòu)


對于商業(yè)應(yīng)用,3級充電樁需要使用三相電源(圖 4),可以在短短 30 分鐘內(nèi)增加 100 多英里的續(xù)航里程。在將電動(dòng)汽車技術(shù)引入運(yùn)輸和物流等應(yīng)用方面,這些超快速充電樁將發(fā)揮重要作用。


續(xù)航焦慮怎么破?高效率直流快充方案給你新靈感

圖4. 單相電網(wǎng)的功率流(左),三相電網(wǎng)的功率流(右)



續(xù)航焦慮怎么破?高效率直流快充方案給你新靈感

圖 5. 快速直流充電樁的架構(gòu)


3級DCFC的前端由三相功率因數(shù)校正 (PFC) 升壓級組成,可以是單向或雙向;升壓級可以采用各種拓?fù)洌ǘ娖交蛉娖?)實(shí)現(xiàn)。PFC級接受電網(wǎng)電壓(400EU、480US),并將其升壓至700至1000V。對于下一代充電樁,業(yè)界已經(jīng)瞄準(zhǔn)了更高電壓。


在升壓級之后,DC?DC 隔離級將總線電壓轉(zhuǎn)換為所需的輸出電壓。此電壓需要與電動(dòng)汽車電池的充電曲線保持一致。因此,DC-DC輸出可能需要在 150 V 至 1500 V 之間擺動(dòng),具體電壓取決于電池和所處的充電階段。轉(zhuǎn)換器通常針對特定電壓水平(常見為 400 V 或 800 V)進(jìn)行優(yōu)化。為了實(shí)現(xiàn)更高的功率水平,DCFC 會(huì)將多個(gè)功率模塊(圖 6)堆疊起來并聯(lián)運(yùn)行。(進(jìn)一步了解如何構(gòu)建基于 SiC 的雙向 25kW 直流快速充電樁 - 設(shè)計(jì)基于碳化硅 (SiC) 的直流快速充電系統(tǒng):主要挑戰(zhàn)、設(shè)計(jì)考慮因素和構(gòu)建驗(yàn)證。)


為了在此類高電壓下實(shí)現(xiàn)更高的效率,業(yè)界正從分立式、IGBT 和混合方案轉(zhuǎn)向 SiC 功率集成模塊 (PIM)。(圖 7)除 PIM 之外,DCFC 還需要多種功率器件,包括柵極驅(qū)動(dòng)器 IC、數(shù)字隔離器、電源 IC(LDO、SMPS 等)和電流檢測。


續(xù)航焦慮怎么破?高效率直流快充方案給你新靈感

圖6. 300kW DCFC中的12x25kW構(gòu)建模塊


續(xù)航焦慮怎么破?高效率直流快充方案給你新靈感

圖7. 機(jī)電設(shè)計(jì)比較


通信和連接也是 DCFC 設(shè)計(jì)的關(guān)鍵方面。堆疊的模塊需要能夠與充電樁控制器通信,車輛和充電樁必須就充電序列進(jìn)行通信(CAN 或 PLC)。獨(dú)立的快速直流充電樁還需要能夠處理充電相關(guān)的支付。最后,充電樁需要管理自身的維護(hù)、軟件升級等(例如通過藍(lán)牙低功耗、Wi-Fi 4、LTE)。實(shí)際標(biāo)準(zhǔn)由所使用的直流充電協(xié)議規(guī)定,例如 IEC?61851 / SAE1772、GB/T、CHAdeMO、組合充電系統(tǒng) (CCS) 或特斯拉超級充電樁(圖 8)。


續(xù)航焦慮怎么破?高效率直流快充方案給你新靈感

圖8. 交流和直流快速充電樁的架構(gòu)


DCFC關(guān)鍵設(shè)計(jì)考慮因素


設(shè)計(jì) DCFC 時(shí),有多個(gè)關(guān)鍵因素需要考慮,這些因素會(huì)影響架構(gòu)設(shè)計(jì)和器件選擇:


目標(biāo)效率:

確定應(yīng)優(yōu)化效率的電壓和功率范圍。充電樁在充電期間在不同的電平運(yùn)行,因此系統(tǒng)應(yīng)針對對電力傳輸效率影響最大的電平進(jìn)行優(yōu)化。


分立式設(shè)計(jì)還是功率集成模塊 (PIM):

分立式設(shè)計(jì)的靈活性更大,但開發(fā)過程也更復(fù)雜(圖 7)。對于許多應(yīng)用而言,模塊在效率方面的諸多優(yōu)勢是分立式設(shè)計(jì)難以企及的。例如,模塊將多個(gè)功率器件集成在單個(gè)緊湊的封裝中,簡化了機(jī)械組裝,優(yōu)化了熱管理,提高了可靠性,并減少了電壓尖峰和高頻 EMI。


架構(gòu)/拓?fù)浣Y(jié)構(gòu):

所選擇的拓?fù)浣Y(jié)構(gòu)(即二電平還是三電平)以及充電樁需要單向運(yùn)行還是雙向運(yùn)行,都會(huì)影響器件的選擇。實(shí)現(xiàn)直流充電樁 PFC 和 DC-DC 級的拓?fù)浣Y(jié)構(gòu)選項(xiàng)有許多。由于功率和電壓水平非常高,許多 OEM 的首選架構(gòu)一般是三級功率因數(shù)校正 (PFC)。PFC 設(shè)計(jì)最常用的拓?fù)浣Y(jié)構(gòu)有三開關(guān) Vienna(單向)、NPC、A-NPC、T-NPC(雙向替換二極管)和六開關(guān)(雙向) 。DC?DC 級通常以全橋或相移 LLC 及其變體實(shí)現(xiàn),并采用雙有源橋 (DAB) 架構(gòu)支持雙向拓?fù)浣Y(jié)構(gòu)。這些拓?fù)浣Y(jié)構(gòu)包括二電平和三電平系統(tǒng),它們分別采用 600 至 650 V 或 900 至 1200 V 開關(guān)和二極管。(進(jìn)一步了解拓?fù)浣Y(jié)構(gòu):快速直流電動(dòng)汽車充電:系統(tǒng)中使用的常見拓?fù)浜凸β势骷?/p>


應(yīng)注意物理系統(tǒng)約束,包括尺寸、重量、成本和其他需要考慮的限制因素。例如,如果尺寸和重量很重要,那么選擇基于 SiC 的模塊將能降低總體布線要求,減小系統(tǒng)尺寸,并減輕車重。


熱管理:

管理散熱對于維持效率、可靠性和系統(tǒng)使用壽命至關(guān)重要。使用 SiC 器件以更高頻率運(yùn)行,可以提高功率密度,提升效率,并減少需要管理的熱量。此外,許多模塊還針對使用極低熱阻材料的熱傳遞進(jìn)行了優(yōu)化。


仿真模型:

擁有器件和模塊的精確模型可以大大簡化和加速設(shè)計(jì)過程,尤其是在權(quán)衡多種設(shè)計(jì)方案時(shí)。


通信:

明確特定應(yīng)用需要哪些標(biāo)準(zhǔn)和協(xié)議。確保所選的供應(yīng)商和產(chǎn)品系列支持所有可能需要納入的標(biāo)準(zhǔn),以支持當(dāng)今和未來的電動(dòng)汽車。


保護(hù):

根據(jù)法規(guī)要求,必須配備接地故障斷路 (GFI) 功能。其他功能(如浪涌電流和過壓保護(hù))也至關(guān)重要。系統(tǒng)中如何集成這些功能(即單獨(dú)的電路、功率級的一部分、集成在模塊上等),將會(huì)影響對其他系統(tǒng)約束條件的優(yōu)化。

文章來源:



關(guān)鍵詞: 安森美 直流快充

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉