新聞中心

EEPW首頁 > 模擬技術 > 設計應用 > 一種用于多路輸出的PEMFC控制系統(tǒng)電源的研制

一種用于多路輸出的PEMFC控制系統(tǒng)電源的研制

作者: 時間:2011-03-28 來源:網(wǎng)絡 收藏

PEMFC氫能發(fā)電機具有無污染、高效率、無噪聲和具有連續(xù)工作和模塊化的特點,特別是具有不受“卡諾”循環(huán)限制、工作溫度低、熱輻射小等優(yōu)點,在軍用和民用領域都具有十分廣闊的應用前景。由于PEMFC發(fā)出的是變化范圍較大的直流電,必須經(jīng)過穩(wěn)壓、逆變等轉(zhuǎn)換后,獲得穩(wěn)定的輸出電壓后才能應用于負載。在PEMFC發(fā)電機的控制系統(tǒng)電源采用自發(fā)電供電時,電源系統(tǒng)需要適應發(fā)電機的輸出特性??刂葡到y(tǒng)正常工作是發(fā)電機安全可靠運行的重要條件,可靠的電源是控制系統(tǒng)穩(wěn)定運行的基礎,因此,研究適應PEMFC發(fā)電系統(tǒng)輸出電特性的控制系統(tǒng)電源是非常必要的。

1 PEMFC控制系統(tǒng)電源總體結(jié)構(gòu)設計

本文分析了一種輸入/輸出隔離型的DC/DC變換電路結(jié)構(gòu),如圖1所示。該電路采用單端反激式結(jié)構(gòu),以PwM方式首先將PEMFC輸出的36~72 V直流電壓逆變?yōu)楦哳l方波,經(jīng)高頻變壓器降壓,再整流濾波得到穩(wěn)定的24 V和5 V直流電壓。其主要由三菱智能功率模塊(IPM)、高頻變壓器、整流濾波電容、霍爾電壓傳感器和PwM控制板組成,PWM控制板通過DSP實現(xiàn)。

2 主電路的設計

2.1 IPM功率模塊

IPM即智能功率模塊(intelligent POWER module),它是將IGBT連同其驅(qū)動電路和多種保護電路封裝在同一模塊內(nèi),使系統(tǒng)設計者可從繁瑣的IGBT驅(qū)動和保護電路的設計中解脫出來。

IPM選擇三菱智能功率模塊PM300HHA120,其包含一只300 A/1 200 V的IGBT,其內(nèi)部含有門極驅(qū)動控制、故障檢測和多種保護電路,并且內(nèi)置有電流傳感器。

IPM可以實現(xiàn)的保護功能有:控制電源欠壓保護(UV);過熱保護(OT);過流保護(OC);短路保護(SC)。需要強調(diào)的是,IPM的保護功能自身并不能排除故障。在電路設計時應利用故障輸出信號FO,使系統(tǒng)在故障發(fā)生時能夠封鎖IPM的輸入信號并停機。PM300HHA120的控制輸入和輸出都用光耦隔離,如圖2所示,采用隔離的電源單獨供電,確保安全可靠。

2.2 高頻變壓器

高頻變壓器的設計是研制開關電源的關鍵技術。單端反激式開關電源的變壓器實際是一個耦合電感,它實現(xiàn)直流隔離、能量存儲和電壓轉(zhuǎn)換的功能。它的性能不僅對電源效率有很大影響,而且關系到開關電源的電磁兼容性等技術指標。

已知參數(shù):直流輸入的最大電壓VIN=72 V;直流輸入的最小電壓VINmin=36 V;開關頻率fs=20 kHz;輸出電壓Vo1=5 V,Vo2=24 V;輸出電流Io1=1 A,Io2=0.5 A;輸出功率Po=5×1+24×0.5=17 W;電源效率η=80%;損耗分配系數(shù)Z=0.5,Z為次級損耗與總功率的比值;初級紋波電流Ir與初級峰值電流Ip的比值Krp=0.4。

(1)初級電感量的計算

初級峰值電流Ip的表達式為:

將數(shù)值代入后可求得Ip=1.17 A。

在每個開關周期內(nèi),由初級傳輸給次級的磁場能量變化范圍是LpI2p/2~Lp(Ip-Ir)2/2。初級電感量由下式確定,并代人數(shù)可得:

(2)磁芯的選擇。鐵氧體軟磁材料是復合氧化物燒結(jié)體,電阻率很高,尤其適合高頻下使用,并且價格便宜,故本開關電源中的高頻變壓器使用R2KB錳鋅鐵氧體材料制成的磁芯。其在25℃時飽和磁感應強度Bs=350 mT。磁芯工作磁感應強度可選為飽和磁感應強度的0.7倍,Bw=0.7Bs=245 mT。

根據(jù)功率和工作頻率選擇E135型磁芯,其Ap=1.52 cm4,Ae=1.04 cm2,Aw=1.46 cm2。

(3)確定變壓器各繞組匝數(shù)。確定變壓器的磁芯后,可根據(jù)下式求得變壓器原邊的匝數(shù):

計算得:Np=100.2匝,實際取101匝。

對5 V輸出變壓器次級電壓Vs1=Vo1+Vl1+Vf1=5+0.3+0.4=5.7 V,其中變壓器次級繞組壓降Vl1為0.3 V,輸出肖特基整流管導通壓降VF1為0.4 V。

對24 V輸出變壓器次級電壓Vs2=Vo2+VL2+Vf2=24+0.6+0.7=25.3 V

其中變壓器次級繞組壓降VL2為0.6 V,快恢復整流管壓降Vf2為0.7 V。

計算次級繞組匝數(shù):

對5 V輸出:

實際取10匝。

對24 V輸出:

實際取42匝。

2.3 整流濾波

(1)輸出濾波電感的設計。輸出濾波電感中的電流除存在直流分量外,并且疊加一個較小的交流分量。輸出濾波電感的設計一般要求電感電流的最大脈動量為最大輸出電流的10%~20%。

對于輸出電壓Vo=5 V,輸出電流Iomax=1 A,最大占空比Dmax=0.63。

代入這些值則得:L=462.5μH。

對于輸出電壓Vo=24 V,重復上面的計算可得:L=0.004 4 H。

(2)輸出濾波電容的選擇。輸出濾波電容上的紋波電流:

根據(jù)上一節(jié)得到的數(shù)據(jù),將ISRMS1=1.712 A,ISRMS2=0.856 A分別代入上式中,可求得Iri11.39 A,Iri2=0.695 A。濾波電容在20 kHz時的紋波電流應大于等于Iri。

輸出的紋波電壓由式Vri=IsprO決定。濾波電容C2,C3,C4選用330μF/50 V,C5選用100 μF/25 V。

3 控制電路的設計

3.1 PWM控制電路

這里以數(shù)字信號處理器(DSP)TMS320LF2407為核心,設計了全數(shù)字PWM控制系統(tǒng),如圖3所示,具有更好的實時性,能很好的適應PEMFC發(fā)電機的輸出特性。

輸出電壓經(jīng)霍爾電壓傳感器隔離采樣后送到DSP的ADC模塊進行模數(shù)轉(zhuǎn)換,這些值在一定時間內(nèi)經(jīng)過一系列數(shù)字PI控制后,給全比較單元產(chǎn)生一個新的比較值,該比較值將在下一個開關周期改變PWM波形的占空比,這樣就達到了控制輸出電壓為所要求值的目的。

DSP中并沒有自動生成PWM信號的功能,要通過編程的方法實現(xiàn)它,通過一個單比較1的輸出腳PWM1實現(xiàn)所需要的PWM信號,下面具體介紹這種方法。單比較單元有一個比較寄存器,用來存儲比較值,當計數(shù)器于比較值相等時,相應的PWM輸出引腳電平發(fā)生跳變,怎樣跳變?nèi)Q于PWM引腳的工作方式。

PWM輸出腳工作方式:有效高方式,有效低方式等。在定時器1工作在連續(xù)增減計數(shù)時,電平的為:輸出腳若設置為有效高,計數(shù)器為零時,輸出腳電平為零,計數(shù)器開始增計數(shù),當與比較值相等時,這時輸出腳為有效狀態(tài),電平變高。計數(shù)器到達周期值后,開始減計數(shù),當減計數(shù)到比較值時,輸出腳為無效狀態(tài),電平變低。輸出腳若設置為有效低。則此時的電平變化與有效高狀態(tài)正好相反。本文采用有效高工作方式。

T1CNT為計數(shù)器1的計數(shù)值,T1PER為計數(shù)器l的周期值。當T1CNT的值增加到與T1PER相等時,計數(shù)器1開始減計數(shù),當T1CNT的值減到0時,計數(shù)器增計數(shù)。計數(shù)器值隨時間變化如圖4所示。在計數(shù)器的計數(shù)值與各比較單元的比較寄存器值(SCMPRl)相等時,輸出腳電平發(fā)生變化。波形圖如圖4所示,從圖中可以看出,計數(shù)器值通過與實時變化的比較寄存器值(SCMPR1)相比較,可以調(diào)節(jié)PWM脈沖寬度,進而改變功率管的占空比,達到對DC/DC變換器輸出電壓的實時控制。

3.2 隔離采樣電路的設計

為了保證電路的可靠運行,電壓的采樣最好能夠與控制電路隔離,這樣能夠避免主電路中大電流流過地線時壓降帶來的干擾。在本機中,通過電壓霍爾元件實現(xiàn)控制電路與主電路的隔離?;魻栯妷涸脑硎牵簩⒋箅娮璐穗妷杭盎魻栐脑?,得到原邊電流,該電流能在副邊產(chǎn)生一定比例的副邊電流,副邊電流流過電阻產(chǎn)生的壓降能夠反應主電路的電壓值。所設計的DC/DC變換器的輸出直流電壓的采樣電路如圖5所示。

從圖5中的參數(shù)可以看出:

UADC1=Uo/10

經(jīng)過霍爾元件的隔離與運放的處理后,送入DSP的A/D轉(zhuǎn)換電壓與主電路隔離,提高了整個電路的抗干擾能力。

3.3 PI調(diào)節(jié)器的參數(shù)選擇

該DC/DC變換器的控制電路采用的是電壓單閉環(huán)控制,將Gv(s)設計成PI控制器,它的參數(shù)選擇在很大程度上決定了DC/DC變換器的性能,因此它們的選擇在機器的研發(fā)過程中至關重要。

在研制該機的過程中,本文是進行參數(shù)選擇為:先選擇主電路的參數(shù)及采樣電路的參數(shù),并且在Matlab中建立該DC/DC變換器的模型,再根據(jù)大致原則,對PI的參數(shù)先進行大致的估計,不斷對PI的參數(shù)進行調(diào)節(jié)。得到滿意的結(jié)果后,將該參數(shù)編程到DSP中,實際運行后,根據(jù)實驗的結(jié)果,再稍微調(diào)整。最后得到的結(jié)果如下:

Gv(s)=5+20/s

在該參數(shù)下,用Matlab仿


上一頁 1 2 下一頁

評論


相關推薦

技術專區(qū)

關閉