高速ADC的性能測(cè)試 作者: 時(shí)間:2007-03-09 來源:網(wǎng)絡(luò) 加入技術(shù)交流群 掃碼加入和技術(shù)大咖面對(duì)面交流海量資料庫查詢 收藏 摘要:針對(duì)某信號(hào)處理機(jī)中的高速A/D轉(zhuǎn)換器(ADC)的應(yīng)用,利用數(shù)字信號(hào)處理機(jī)的硬件平臺(tái),采用純正弦信號(hào)作為輸入信號(hào),用數(shù)字信號(hào)處理器(DSP)控制采樣,并將A/D轉(zhuǎn)換后的數(shù)據(jù)存儲(chǔ),進(jìn)行FFT變換,進(jìn)而來分析ADC的信噪比及有效位數(shù)。該測(cè)試方法具有全數(shù)字、可編程、精確度高等優(yōu)點(diǎn),是較為先進(jìn)的測(cè)試方法。關(guān)鍵詞:AD轉(zhuǎn)換器 信噪比 有效位數(shù) FFT DSP 目前的實(shí)時(shí)信號(hào)處理機(jī)要求ADC盡量靠近視頻、中頻甚至射頻,以獲取盡可能多的目標(biāo)信息。因而,ADC的性能好壞直接影響整個(gè)系統(tǒng)指標(biāo)的高低和性能好壞,從而使得ADC的性能測(cè)試變得十分重要。 ADC靜態(tài)測(cè)試的方法已研究多年,國(guó)際上已有標(biāo)準(zhǔn)的測(cè)試方法,但靜態(tài)測(cè)試不能反映ADC的動(dòng)態(tài)特性,因此有必要研究動(dòng)態(tài)測(cè)試方法。動(dòng)態(tài)特性包括很多,如信噪比(SNR)、信號(hào)與噪聲+失真之比(SINAD)、總諧波失真(THD)、無雜散動(dòng)態(tài)范圍(SFDR)、雙音互調(diào)失真(TTIMD)等。本文討論了利用數(shù)字方法對(duì)ADC的信噪比進(jìn)行測(cè)試,計(jì)算出有效位數(shù),并通過測(cè)試證明了提高采樣頻率能改善SNR,相當(dāng)于提高了ADC的有效位數(shù)。在本系統(tǒng)中使用了AD9224,它是12bit、40MSPS、單5V供電的流水線型低功耗ADC。1 測(cè)試系統(tǒng)原理 傳統(tǒng)的動(dòng)態(tài)測(cè)試方法是用高精度DAC來重建ADC輸出信號(hào),然后用模擬方法分析(如圖1所示)。但這樣的測(cè)試方法復(fù)雜、精度低、能測(cè)試的指標(biāo)有限。國(guó)外從20世紀(jì)70年代起研究用數(shù)字信號(hào)處理技術(shù)對(duì)ADC進(jìn)行動(dòng)態(tài)測(cè)試,主要方法有正弦波擬合法[1]、FFT法[2~3]、直方圖法[4]等,而國(guó)內(nèi)這方面的研究則剛剛起步。 本文介紹的測(cè)試系統(tǒng)是利用作者開發(fā)的數(shù)字信號(hào)處理機(jī)中的DSP及其仿真系統(tǒng)來進(jìn)行數(shù)據(jù)的采集、存儲(chǔ)、處理及顯示,從而構(gòu)成可編程、數(shù)字化的ADC性能測(cè)試系統(tǒng)。 在該信號(hào)處理機(jī)中,首先采用兩路ADC進(jìn)行I、Q正交采樣;然后用DSP并行系統(tǒng)進(jìn)行數(shù)據(jù)的FFT運(yùn)算、求模以及恒虛警處理;最后將結(jié)果通過并口傳給筆記本電腦進(jìn)行顯示。實(shí)時(shí)信號(hào)處理機(jī)原理框圖如圖2所示。其中,DSP芯片是ADSP21060,主頻為40MHz。它可以通過JTAG接口與PC機(jī)相連。PC機(jī)上運(yùn)行DSP的在線仿真軟件,能夠?qū)崟r(shí)地控制DSP的運(yùn)行,并將處理結(jié)果以數(shù)據(jù)或圖形的方式顯示或存儲(chǔ)起來。 前面講過,過去對(duì)ADC進(jìn)行測(cè)試是用模擬方法(如圖1),并且需要高性能的D/A轉(zhuǎn)換器?,F(xiàn)在則利用計(jì)算機(jī)進(jìn)行數(shù)字信號(hào)處理,可以實(shí)現(xiàn)數(shù)字化的測(cè)試?,F(xiàn)取處理機(jī)中的一路ADC搭建測(cè)試系統(tǒng),如圖3所示。 在本測(cè)試系統(tǒng)中,使用信號(hào)發(fā)生器產(chǎn)生單頻正弦信號(hào),f=1.8625MHz。采樣頻率fs由可編程邏輯器件(EPLD)產(chǎn)生,可產(chǎn)生的采樣時(shí)鐘頻率為3.725MHz和7.45MHz兩種,可對(duì)正弦信號(hào)進(jìn)行整數(shù)倍采樣(2倍和4倍)。這里將正弦信號(hào)采樣數(shù)據(jù)取為256個(gè)來進(jìn)行處理。2 ADC動(dòng)態(tài)指標(biāo) 2.1 信噪比 對(duì)于理想的ADC來說,在奈奎斯特帶寬內(nèi)的噪聲電壓有效值可表示為q/根號(hào)12。q表示最低位碼的權(quán)值,即ADC的量化電壓,該值與輸入信號(hào)的幅度和頻率無關(guān)。對(duì)于一個(gè)滿度的正弦波輸入信號(hào),理論上的信噪比(SNR)可表示為: SNR=6.02N+1.76dB+10lg(fs/2B) (1) 式中,N是ADC的位數(shù),fs是采樣頻率,B是模擬輸入信號(hào)的帶寬。上式右邊第三項(xiàng)表示增加采樣頻率(過采樣)可提高信噪比。 2.2 有效位數(shù) 實(shí)際上ADC的誤差表現(xiàn)為靜態(tài)及動(dòng)態(tài)非線性誤差,并且動(dòng)態(tài)誤差隨輸入信號(hào)壓擺率的增加而變大。因此實(shí)際測(cè)量的信噪比要比理論上的小一些。計(jì)算有效位數(shù)(ENOB)可以從對(duì)方程(1)的N求解得到。 ENOB(N)=6.02N+1.76dB+10lg(fs/2B) (2)采用DET技術(shù)時(shí),噪聲既包括量化噪聲,也包括采樣過程中奈奎斯特帶寬外的諧波與帶寬內(nèi)信號(hào)混迭產(chǎn)生的噪聲。另外,因?yàn)檎倚盘?hào)容易產(chǎn)生和便于數(shù)學(xué)分析,所以在評(píng)估ADC的動(dòng)態(tài)性能時(shí),它是最常用的信號(hào)。 3 用FFT法測(cè)試ADC信噪比及計(jì)算有效位數(shù) FFT是從頻域測(cè)試ADC信噪比的方法,步驟如下: (1)用高精度正弦波輸入被測(cè)ADC,正弦波頻率f=1.8625MHz,采樣頻率分別為fs=3.725MHz和fs=7.45MHz?熏正弦波頻率小于采樣頻率的一半,保證不會(huì)發(fā)生混疊。用DSP順序記錄ADC輸出數(shù)據(jù)。 (2)接著用DSP進(jìn)行FFT運(yùn)算。當(dāng)數(shù)據(jù)記錄不是包含整數(shù)個(gè)信號(hào)周期時(shí),要加窗函數(shù)來抑制頻譜泄漏??蛇x擇適當(dāng)?shù)拇昂瘮?shù),使信號(hào)能量集中在主瓣內(nèi),主瓣外能量可忽略。 (3)根據(jù)FFT運(yùn)算的結(jié)果,首先計(jì)算信號(hào)的有效值。然后取基頻和其兩旁適當(dāng)數(shù)目的采樣值,求它們的平方和的平方根。所需采樣的數(shù)目由已知的ADC的分辨率決定。其余的頻率采樣值的平方和的平方根作為噪聲的有效值,它包括量化噪聲、ADC的諧波噪聲、超越噪聲及FFT的舍入誤差。有了這兩個(gè)有效值就能計(jì)算ADC的信噪比(SNR): SNR=20lg(Vs/Vn) (3) 其中,Vs表示信號(hào)電平的有效值,Vn表示噪聲電平的有效值。 (4)計(jì)算出信噪比后(噪聲包括高次諧波失真、雜散波失真和寬帶噪聲),根據(jù)公式(2)即可計(jì)算出ADC的有效位數(shù)。4 測(cè)試結(jié)果 利用上述測(cè)試系統(tǒng)和測(cè)試參數(shù)對(duì)ADC采樣的數(shù)據(jù)進(jìn)行FFT運(yùn)算,并按上述算法進(jìn)行計(jì)算,結(jié)果表明,在fs=2f時(shí),SNR=67.6dB,根據(jù)公式(2)得出有效位數(shù)為: ENOB(N)=[SNR(實(shí)際)-1.7dB-10lg(fs/2B)]/6.02 =(67.6-1.7)/6.02=10.95bit 在fs=4f時(shí),采樣頻率提高一倍,SNR=70.3dB,提高了2.7dB左右。理論上,采樣率提高一倍時(shí),由公式(1)得: ΔSNR=10lg(fs′/2B)-10lg(fs/2B)=10lg2-10lg1=3dB 即采樣率提高一倍,信噪比提高3dB,相當(dāng)于ADC有效位數(shù)提高半位??梢妼?shí)際測(cè)試數(shù)據(jù)結(jié)果跟理論值基本吻合。以2倍速采樣頻率和4倍速采樣頻率采樣后作FFT的結(jié)果如圖4和圖5所示。 對(duì)于高速ADC來說,其動(dòng)態(tài)特性格外重要,因而精確地測(cè)試ADC的動(dòng)態(tài)指標(biāo)成為非常有意義的工作。對(duì)于實(shí)時(shí)信號(hào)處理機(jī)而言,ADC模塊單元的大動(dòng)態(tài)范圍、高信噪比等顯得尤為重要,這些性能將直接影響到后續(xù)的信號(hào)處理和檢測(cè)。因此利用實(shí)時(shí)信號(hào)處理機(jī)本身的硬件平臺(tái),通過軟件編程來實(shí)現(xiàn)對(duì)ADC的測(cè)試是一種高效、高精度的方法。
評(píng)論