新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 設(shè)計(jì)應(yīng)用 > FPGA技術(shù)在雷達(dá)信號(hào)模擬器中的應(yīng)用

FPGA技術(shù)在雷達(dá)信號(hào)模擬器中的應(yīng)用

作者: 時(shí)間:2010-05-19 來源:網(wǎng)絡(luò) 收藏

  2.1 完全DDS內(nèi)核

  完全DDS內(nèi)核的組成框圖如圖2所示。完全DDS核包括頻率累加器、相位累加器、相位偏移累加器、波形存儲(chǔ)器、相位選擇開關(guān)等部分。頻率累加器在產(chǎn)生線性調(diào)頻信號(hào)時(shí)控制頻率增量的大?。幌辔焕奂悠骱推胀ǖ腄DS中的相位累加器功能相同,其輸入為頻率控制字,決定輸出信號(hào)的頻率;相位偏移累加器用于產(chǎn)生相位編碼信號(hào),其相位偏移字根據(jù)需要可以有多種,但必須有一種相位偏移為0°;正弦表用于存儲(chǔ)數(shù)字正弦波,為了減小波形存儲(chǔ)容量,正弦表中只存儲(chǔ)了1/4個(gè)周期的正弦波信號(hào),通過邏輯控制實(shí)現(xiàn)全周期正弦波信號(hào)的產(chǎn)生。

FPGA技術(shù)在雷達(dá)信號(hào)模擬器中的應(yīng)用

  完全DDS內(nèi)核的工作原理與普通DDS芯片的工作原理大致相同,只不過在產(chǎn)生不同調(diào)制樣式信號(hào)時(shí)取舍不同。由于相位/ 幅度轉(zhuǎn)換表中存放的是正弦信號(hào),因此模塊只輸出受到不同調(diào)制的正弦信號(hào)。如果將相位/ 幅度轉(zhuǎn)換表做成內(nèi)容可修改的雙端口RAM結(jié)構(gòu),則該模塊也能產(chǎn)生特殊樣式的周期信號(hào)。基于完全DDS核的信號(hào)產(chǎn)生方法其優(yōu)點(diǎn)是預(yù)存波形的點(diǎn)數(shù)不變,輸出信號(hào)的頻率僅由頻率控制字和系統(tǒng)時(shí)鐘決定,三者之間的關(guān)系如上節(jié)DDS基本原理描述的關(guān)系。

  如前所述,DDS輸出信號(hào)存在雜散頻譜。引起雜散頻譜的原因主要有相位截?cái)嘈?yīng)、波形幅度量化誤差和DAC的非理想特性。由于本系統(tǒng)采用單獨(dú)的DAC芯片,這里只討論前兩種因素對(duì)信號(hào)質(zhì)量的影響。

  為了得到高的頻率分辨率,相位累加器位數(shù)一般較大,而在DDS設(shè)計(jì)中,為了節(jié)省波形存儲(chǔ)器的容量,人們希望在不引入過多干擾的情況下盡可能多地截去相位累加器的低有效位B。故相位累加器的N位輸出中只有高A位去尋址只讀存儲(chǔ)器,從而產(chǎn)生了相位截?cái)嗾`差。根據(jù)相關(guān)分析,相位截?cái)鄬⒁鹬芷谛苑侵C波雜散,其譜曲線“成對(duì)”出現(xiàn),“成對(duì)”譜線出現(xiàn)的間隔為fc/2B。通常采用Wheatley相位抖動(dòng)注入法消除這種雜散,在每次相位累加器溢出之時(shí),高頻脈沖產(chǎn)生一個(gè)0~(K-1)的隨機(jī)數(shù)Kn,加到相位累加器的寄存器值上,使相位累加器的溢出不總是比理想的溢出推后,而是隨機(jī)地提前,從而打破了周期性。這種方法對(duì)去除雜散非常有效,但所付出的代價(jià)是產(chǎn)生了寬頻帶相位噪聲,但這種寬頻帶相位噪聲比雜散更容易濾除。

  由于ROM存儲(chǔ)的波形樣點(diǎn)的幅度編碼由有限位二進(jìn)制數(shù)表示,這樣DDS的輸出波形就存在幅度量化誤差,僅從量化觀點(diǎn)看,設(shè)正弦波的樣點(diǎn)值用D位二進(jìn)制碼來表示,則信號(hào)功率與量化噪聲總功率之比為6D dB??梢姡攘炕男旁氡入S著D的增加而提高。為了在低比特DAC情況下能夠采用隨機(jī)化幅度抖動(dòng)注入法獲得更高的信號(hào)質(zhì)量,在DAC的輸入數(shù)據(jù)被截?cái)喑蒑 bit之前,給正弦查詢表輸出的D bit數(shù)據(jù)加上一個(gè)隨機(jī)數(shù),這個(gè)隨機(jī)數(shù)的范圍是0~(2D-M-1),如圖3所示。

FPGA技術(shù)在雷達(dá)信號(hào)模擬器中的應(yīng)用

  通過對(duì)一個(gè)有5 bit DAC的隨機(jī)化幅度抖動(dòng)注入DDS的頻譜和兩個(gè)分別有5 bit和11 bit DAC的普通正弦輸出DDS的頻譜的比較,隨機(jī)化幅度抖動(dòng)注入DDS雜散的電平比起帶有相同分辨力DAC的普通DDS雜散的電平至少低10 dB,而與有11 bit DAC的普通正弦輸出DDS的雜散的電平差不多。尤其值得注意的是,一直出現(xiàn)在正弦輸出DDS載波附近的雜散譜線在隨機(jī)化幅度抖動(dòng)注入DDS輸出頻譜中被消除掉了[5]。



評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉