大功率穩(wěn)壓逆變電源的設計與制作
標稱功率300W的逆變電源,用于家庭電風扇、電視機,以及日常照明等是不成問題的。筆者曾用過300W逆變器,利用12V/60AH蓄電池向上述家用電器供電,一次充滿電后,可使用近5小時。不過,即使蓄電池電壓充足,啟動180立升的電冰箱仍有困難,因啟動瞬間輸出電壓下降為不足180V而失敗。電冰箱壓縮機標稱功率多為100W左右,實際啟動瞬間電流可達2A以上,若欲使啟動瞬間降壓不十分明顯,必須將輸出功率提高至600VA。如在增大輸出功率的同時,采用PWM穩(wěn)壓系統(tǒng),可使啟動瞬間降壓幅度明顯減小。無論電風扇還是電冰箱,應用逆變電源供電時,均應在逆變器輸出端增設圖1中的LC濾波器,以改善波形,避免脈沖上升沿尖峰擊穿電機繞組。
采用雙極型開關管的逆變器,基極驅(qū)動電流基本上為開關電流的1/β,因此大電流開關電路必須采用多級放大,不僅使電路復雜化,可靠性也變差 而且隨著輸出功率的增大,開關管驅(qū)動電流需大于集電極電流的1/β,致使普通驅(qū)動IC無法直接驅(qū)動。雖說采用多級放大可以達到目的,但是波形失真卻明顯增大,從而導致開關管的導通/截止損耗也增大。目前解決大功率逆變電源及UPS的驅(qū)動方案,大多采用MOS FET管作開關器件。
一、MOSFET管的應用
近年來,金屬氧化物絕緣柵場效應管的制造工藝飛速發(fā)展,使之漏源極耐壓(VDS)達kV以上,漏源極電流(IDS)達50A已不足為奇,因而被廣泛用于高頻功率放大和開關電路中。
除此而外,還有雙極性三極管與MOS FET管的混合產(chǎn)品,即所謂IGBT絕緣柵雙極晶體管。顧名思義,它屬MOS FET管作為前級、雙極性三極管作為輸出的組合器件。因此,IGBT既有絕緣柵場效應管的電壓驅(qū)動特性,又有雙極性三極管飽合壓降小和耐壓高的輸出特性,其關斷時間達到0.4μs以下,VCEO達到1.8kV,ICM達到100A的水平,目前常用于電機變頻調(diào)速、大功率逆變器和開關電源等電路中。
一般中功率開關電源逆變器常用MOS FET管的并聯(lián)推挽電路。MOS FET管漏-源極間導通電阻,具有電阻的均流特性,并聯(lián)應用時不必外加均流電阻,漏源極直接并聯(lián)應用即可。而柵源極并聯(lián)應用,則每只MOS FET管必須采用單獨的柵極隔離電阻,避免各開關管柵極電容并聯(lián)形成總電容增大,導致充電電流增大,使驅(qū)動電壓的建立過程被延緩,開關管導通損耗增大。
二、MOSFET的驅(qū)動
近年來,隨著MOS FET生產(chǎn)工藝的改進,各種開關電源、變換器都廣泛采用MOS FET管作為高頻高壓開關電路,但是,專用于驅(qū)動MOS FET管的集成電路國內(nèi)極少見。驅(qū)動MOS FET管的要求是,低輸出阻抗,內(nèi)設灌電流驅(qū)動電路。所以,普通用于雙極型開關管的驅(qū)動IC不能直接用于驅(qū)動場效應管。
目前就世界范圍來說,可直接驅(qū)動MOS FET管的IC品種仍不多,單端驅(qū)動器常用的是UC3842系列,而用于推挽電路雙端驅(qū)動器有SG3525A(驅(qū)動N溝道場效應管)、SG3527A(驅(qū)動P溝道場效應管)和SG3526N(驅(qū)動N溝道場效應管)。然而在開關電源快速發(fā)展的近40年中,畢竟有了一大批優(yōu)秀的、功能完善的雙端輸出驅(qū)動IC。同時隨著MOS FET管應用普及,又開發(fā)了不少新電路,可將其用于驅(qū)動MOS FET管,解決MOS FET的驅(qū)動無非包括兩個內(nèi)容:一是降低驅(qū)動IC的輸出阻抗;二是增設MOS FET管的灌電流通路。為此,不妨回顧SG3525A、SG3527A、SG3526N以及單端驅(qū)動器UC3842系列的驅(qū)動級。
圖2a為上述IC的驅(qū)動輸出電路(以其中一路輸出為例)。振蕩器的輸出脈沖經(jīng)或非門,將脈沖上升沿和下降沿輸出兩路時序不同的驅(qū)動脈沖。在脈沖正程期間,Q1導通,Q2截止,Q1發(fā)射極輸出的正向脈沖,向開關管柵極電容充電,使漏—源極很快達到導通閾值。當正程脈沖過后,若開關管柵—源極間充電電荷不能快速放完,將使漏源極驅(qū)動脈沖不能立即截止。為此,Q1截止后,或非門立即使Q2導通,為柵源極電容放電提供通路。此驅(qū)動方式中,Q1提供驅(qū)動電流,Q2提供灌電流(即放電電流)。Q1為發(fā)射極輸出器,其本身具有極低的輸出阻抗。
為了達到上述要求,將普通用于雙極型開關管驅(qū)動輸出接入圖2b的外設驅(qū)動電路,也可以滿足MOS FET管的驅(qū)動要求。設計驅(qū)動雙極型開關管的集成電路,常采用雙端圖騰柱式輸出兩路脈沖,即兩路輸出脈沖極性是相同的,以驅(qū)動推挽的兩只NPN型三極管。為了讓推挽兩管輪流導通,兩路驅(qū)動脈沖的時間次序不同。如果第一路輸出正脈沖,經(jīng)截止后,過一死區(qū)時間,第二路方開始輸出。兩路驅(qū)動級采用雙極型三極管集射極開路輸出,以便于取得不同的脈沖極性,用于驅(qū)動NPN型或PNP型開關管。
圖2b中接入了PNP型三極管Q和二極管D,其作用是分別使驅(qū)動電流和灌電流分路。前級驅(qū)動IC內(nèi)部緩沖器的發(fā)射極,在負載電阻R1上建立未倒相的正極性驅(qū)動脈沖使三極管Q截止。在驅(qū)動脈沖上升沿開始,正極性脈沖通過二極管D加到MOS FET開關管柵—源極,對柵源極電容CGS充電,當充電電壓達到開關管柵極電壓閾值時,其漏源極導通。正脈沖持續(xù)期過后,IC內(nèi)部緩沖放大器發(fā)射極電平為零,輸出端將有一定時間的死區(qū)。此時,Q的發(fā)射極帶有CGS充電電壓,因而Q導通,CGS通過Q的ec極放電,Q的集電極電流為灌電流通路。R2為開關管的柵極電阻,目的是避免開關管的柵極在Q、D轉換過程中懸空,否則其近似無窮大的高輸入阻抗極容易被干擾電平所擊穿。采用此方式利用普通雙端輸出集成電路,驅(qū)動MOS FET開關管,可以達到比較理想的效果。為了降低導通/截止損耗,D應選用快速開關二極管。Q的集電極電流應根據(jù)開關管決定,若為了提高輸出功率,每路輸出采用多只MOS FET管并聯(lián)應用,則應選擇ICM足夠大的灌流三極管和高速開關二極管。
三、TL494應用
目前所有的雙端輸出驅(qū)動IC中,可以說美國德克薩斯儀器公司開發(fā)的TL494功能最完善、驅(qū)動能力最強,其兩路時序不同的輸出總電流為SG3525的兩倍,達到400mA。僅此一點,使輸出功率千瓦級及以上的開關電源、DC/DC變換器、逆變器,幾乎無一例外地采用TL494。雖然TL494設計用于驅(qū)動雙極型開關管,然而目前絕大部分采用MOS FET開關管的設備,利用外設灌流電路,也廣泛采用TL494。為此,本節(jié)中將詳細介紹其功能及應用電路。其內(nèi)部方框圖如圖3所示。其內(nèi)部電路功能、特點及應用方法如下:
A.內(nèi)置RC定時電路設定頻率的獨立鋸齒波振蕩器,其振蕩頻率fo(kHz)=1.2/R(kΩ)?C(μF),其最高振蕩頻率可達300kHz,既能驅(qū)動雙極性開關管,增設灌電流通路后,還能驅(qū)動MOS FET開關管。
B.內(nèi)部設有比較器組成的死區(qū)時間控制電路,用外加電壓控制比較器的輸出電平,通過其輸出電平使觸發(fā)器翻轉,控制兩路輸出之間的死區(qū)時間。當?shù)?腳電平升高時,死區(qū)時間增大。
C.觸發(fā)器的兩路輸出設有控制電路,使Q1、Q2既可輸出雙端時序不同的驅(qū)動脈沖,驅(qū)動推挽開關電路和半橋開關電路,同時也可輸出同相序的單端驅(qū)動脈沖,驅(qū)動單端開關電路。
D.內(nèi)部兩組完全相同的誤差放大器,其同相輸入端均被引出芯片外,因此可以自由設定其基準電壓,以方便用于穩(wěn)壓取樣,或利用其中一種作為過壓、過流超閾值保護。
E.輸出驅(qū)動電流單端達到400mA,能直接驅(qū)動峰值電流達5A的開關電路。雙端輸出脈沖峰值為2×200mA,加入驅(qū)動級即能驅(qū)動近千瓦的推挽式和橋式電路。
TL494的各腳功能及參數(shù)如下:第1、16腳為誤差放大器A1、A2的同相輸入端。最高輸入電壓不超過Vcc+0.3V。第2、15腳為誤差放大器A1、A2的反相輸入端??山尤胝`差檢出的基準電壓。第3腳為誤差放大器A1、A2的輸出端。集成電路內(nèi)部用于控制PWM比較器的同相輸入端,當A1、A2任一輸出電壓升高時,控制PWM比較器的輸出脈寬減小。同時,該輸出端還引出端外,以便與第2、15腳間接入RC頻率校正電路和直接負反饋電路,一則穩(wěn)定誤差放大器的增益,二則防止其高頻自激。另外,第3腳電壓反比于輸出脈寬,也可利用該端功能實現(xiàn)高電平保護。第4腳為死區(qū)時間控制端。當外加1V以下的電壓時,死區(qū)時間與外加電壓成正比。如果電壓超過1V,內(nèi)部比較器將關斷觸發(fā)器的輸出脈沖。第5腳為鋸齒波振蕩器外接定時電容端,第6腳為鋸齒波振蕩器外接定時電阻端,一般用于驅(qū)動雙極性三極管時需限制振蕩頻率小于40kHz。第7腳為接地端。第8、11腳為兩路驅(qū)動放大器NPN管的集電極開路輸出端。當?shù)?、11腳接Vcc,第9、10腳接入發(fā)射極負載電阻到地時,兩路為正極性圖騰柱式輸出,用以驅(qū)動各種推挽開關電路。當?shù)?、11腳接地時,兩路為同相位驅(qū)動脈沖輸出。第8、11腳和9、10腳可直接并聯(lián),雙端輸出時最大驅(qū)動電流為2×200mA,并聯(lián)運用時最大驅(qū)動電流為400mA。第14腳為內(nèi)部基準電壓精密穩(wěn)壓電路端。輸出5V±0.25V的基準電壓,最大負載電流為10mA。用于誤差檢出基準電壓和控制模式的控制電壓。TL494的極限參數(shù):最高瞬間工作電壓(12腳)42V,最大輸出電流250mA,最高誤差輸入電壓Vcc+0.3V,測試/環(huán)境溫度≤45℃,最大允許功耗1W,最高結溫150℃,使用溫度范圍0~70℃,保存溫度-65~+150℃。
TL494的標準應用參數(shù):Vcc(第12腳)為7~40V,Vcc1(第8腳)、Vcc2(第11腳)為40V,Ic1、Ic2為200mA,RT取值范圍1.8~500kΩ,CT取值范圍4700pF~10μF,最高振蕩頻率(fOSC)≤300kHz。
圖4為外刊介紹的利用TL494組成的400W大功率穩(wěn)壓逆變器電路。它激式變換部分采用TL494,VT1、VT2、VD3、VD4構成灌電流驅(qū)動電路,驅(qū)動兩路各兩只60V/30A的MOS FET開關管。如需提高輸出功率,每路可采用3~4只開關管并聯(lián)應用,電路不變。TL494在該逆變器中的應用方法如下:
第1、2腳構成穩(wěn)壓取樣、誤差放大系統(tǒng),正相輸入端1腳輸入逆變器次級取樣繞組整流輸出的15V直流電壓,經(jīng)R1、R2分壓,使第1腳在逆變器正常工作時有近4.7~5.6V取樣電壓。反相輸入端2腳輸入5V基準電壓(由14腳輸出)。當輸出電壓降低時,1腳電壓降低,誤差放大器輸出低電平,通過PWM電路使輸出電壓升高。正常時1腳電壓值為5.4V,2腳電壓值為5V,3腳電壓值為0.06V。此時輸出AC電壓為235V(方波電壓)。第4腳外接R6、R4、C2設定死區(qū)時間。正常電壓值為0.01V。第5、6腳外接CT、RT設定振蕩器三角波頻率為100Hz。正常時5腳電壓值為1.75V,6腳電壓值為3.73V。第7腳為共地。第8、11腳為內(nèi)部驅(qū)動輸出三極管集電極,第12腳為TL494前級供電端,此三端通過開關S控制TL494的啟動/停止,作為逆變器的控制開關。當S1關斷時,TL494無輸出脈沖,因此開關管VT4~VT6無任何電流。S1接通時,此三腳電壓值為蓄電池的正極電壓。第9、10腳為內(nèi)部驅(qū)動級三極管發(fā)射極,輸出兩路時序不同的正脈沖。正常時電壓值為1.8V。第13、14、15腳其中14腳輸出5V基準電壓,使13腳有5V高電平,控制門電路,觸發(fā)器輸出兩路驅(qū)動脈沖,用于推挽開關電路。第15腳外接5V電壓,構成誤差放大器反相輸入基準電壓,以使同相輸入端16腳構成高電平保護輸入端。此接法中,當?shù)?6腳輸入大于5V的高電平時,可通過穩(wěn)壓作用降低輸出電壓,或關斷驅(qū)動脈沖而實現(xiàn)保護。在它激逆變器中輸出超壓的可能性幾乎沒有,故該電路中第16腳未用,由電阻R8接地。
該逆變器采用容量為400VA的工頻變壓器,鐵芯采用45×60mm2的硅鋼片。初級繞組采用直徑1.2mm的漆包線,兩根并繞2×20匝。次級取樣繞組采用0.41mm漆包線繞36匝,中心抽頭。次級繞組按230V計算,采用0.8mm漆包線繞400匝。開關管VT4~VT6可用60V/30A任何型號的N溝道MOS FET管代替。VD7可用1N400X系列普通二極管。該電路幾乎不經(jīng)調(diào)試即可正常工作。當C9正極端電壓為12V時,R1可在3.6~4.7kΩ之間選擇,或用10kΩ電位器調(diào)整,使輸出電壓為額定值。如將此逆變器輸出功率增大為近600W,為了避免初級電流過大,增大電阻性損耗,宜將蓄電池改用24V,開關管可選用VDS為100V的大電流MOS FET管。需注意的是,寧可選用多管并聯(lián),而不選用單只IDS大于50A的開關管,其原因是:一則價格較高,二則驅(qū)動太困難。建議選用100V/32A的2SK564,或選用三只2SK906并聯(lián)應用。同時,變壓器鐵芯截面需達到50cm2,按普通電源變壓器計算方式算出匝數(shù)和線徑,或者采用廢UPS-600中變壓器代用。如為電冰箱、電風扇供電,請勿忘記加入LC低通濾波器。
比較器相關文章:比較器工作原理
低通濾波器相關文章:低通濾波器原理
電荷放大器相關文章:電荷放大器原理 脈沖點火器相關文章:脈沖點火器原理 雙控開關相關文章:雙控開關原理 激光器相關文章:激光器原理 激光二極管相關文章:激光二極管原理
評論