DSP+FPGA實時信號處理系統(tǒng)
1 信號處理系統(tǒng)的類型與常用處理機結(jié)構(gòu)
根據(jù)信號處理系統(tǒng)在構(gòu)成、處理能力以及計算問題到硬件結(jié)構(gòu)映射方法的不同,將現(xiàn)代信號處理系統(tǒng)分為三大類:
·指令集結(jié)構(gòu)(ISA)系統(tǒng).在由各種微處理器、DSP處理器或?qū)S弥噶罴幚砥鞯冉M成的信號處理系統(tǒng)中,都需要通過系統(tǒng)中的處理器所提供的指令系統(tǒng)(或微代碼)來描述各種算法,并在指令部件的控制下完成對各種可計算問題的求解.
·硬連線結(jié)構(gòu)系統(tǒng).主要是指由專用集成電路(ASIC)構(gòu)成的系統(tǒng),其基本特征是功能固定、通常用于完成特定的算法,這種系統(tǒng)適合于實現(xiàn)功能固定和數(shù)據(jù)結(jié)構(gòu)明確的計算問題.不足之處主要在于:設計周期長、成本高,且沒有可編程性,可擴展性差.
·可重構(gòu)系統(tǒng).基本特征是系統(tǒng)中有一個或多個可重構(gòu)器件(如FPGA),可重構(gòu)處理器之間或可重構(gòu)處理器與ISA結(jié)構(gòu)處理器之間通過互連結(jié)構(gòu)構(gòu)成一個完整的計算系統(tǒng).
從系統(tǒng)信號處理系統(tǒng)的構(gòu)成方式來看,常用的處理機結(jié)構(gòu)有下面幾種:單指令流單數(shù)據(jù)流(SISD)、單指令流多數(shù)據(jù)流(SIMD)、多指令流多數(shù)據(jù)流(MIMD).
·SISD結(jié)構(gòu)通常由一個處理器和一個存貯器組成,它通過執(zhí)行單一的指令流對單一的數(shù)據(jù)流進行操作,指令按順序讀取,數(shù)據(jù)在每一時刻也只能讀取一個.弱點是單片處理器處理能力有限,同時,這種結(jié)構(gòu)也沒有發(fā)揮數(shù)據(jù)處理中的并行性潛力,所以在實時系統(tǒng)或高速系統(tǒng)中,很少采用SISD結(jié)構(gòu).
· SIMD結(jié)構(gòu)系統(tǒng)由一個控制器、多個處理器、多個存貯模塊和一個互連網(wǎng)絡組成.所有“活動的”處理器在同一時刻執(zhí)行同一條指令,但每個處理器執(zhí)行這條指令時所用的數(shù)據(jù)是從它本身的存儲模塊中讀取的.對操作種類多的算法,當要求存取全局數(shù)據(jù)或?qū)τ诓煌臄?shù)據(jù)要求做不同的處理時,它是無法獨立勝任的.另外,SIMD 一般都要求有較多的處理單元和極高的I/O吞吐率,如果系統(tǒng)中沒有足夠多的適合SIMD 處理的任務,采用SIMD 是不合算的.
· MIMD結(jié)構(gòu)就是通常所指的多處理機,典型的MIMD系統(tǒng)由多臺處理機、多個存儲模塊和一個互連網(wǎng)絡組成,每臺處理機執(zhí)行自己的指令,操作數(shù)也是各取各的.MIMD結(jié)構(gòu)中每個處理器都可以單獨編程,因而這種結(jié)構(gòu)的可編程能力是最強的.但由于要用大量的硬件資源解決可編程問題,硬件利用率不高.
2 DSP+ASIC結(jié)構(gòu)
隨著大規(guī)??删幊唐骷陌l(fā)展,采用DSP+ASIC結(jié)構(gòu)的信號處理系統(tǒng)顯示出了其優(yōu)越性,正逐步得到重視.與通用集成電路相比,ASIC芯片具有體積小、重量輕、功耗低、可靠性高等幾個方面的優(yōu)勢,而且在大批量應用時,可降低成本.
現(xiàn)場可編程門陣列(FPGA)是在專用ASIC的基礎上發(fā)展出來的,它克服了專用ASIC不夠靈活的缺點.與其他中小規(guī)模集成電路相比,其優(yōu)點主要在于它有很強的靈活性,即其內(nèi)部的具體邏輯功能可以根據(jù)需要配置,對電路的修改和維護很方便.目前,FPGA的容量已經(jīng)跨過了百萬門級,使得FPGA成為解決系統(tǒng)級設計的重要選擇方案之一.
DSP+FPGA結(jié)構(gòu)最大的特點是結(jié)構(gòu)靈活,有較強的通用性,適于模塊化設計,從而能夠提高算法效率;同時其開發(fā)周期較短,系統(tǒng)易于維護和擴展,適合于實時信號處理.
實時信號處理系統(tǒng)中,低層的信號預處理算法處理的數(shù)據(jù)量大,對處理速度的要求高,但運算結(jié)構(gòu)相對比較簡單,適于用FPGA進行硬件實現(xiàn),這樣能同時兼顧速度及靈活性.高層處理算法的特點是所處理的數(shù)據(jù)量較低層算法少,但算法的控制結(jié)構(gòu)復雜,適于用運算速度高、尋址方式靈活、通信機制強大的DSP芯片來實現(xiàn).
3 線性流水陣列結(jié)構(gòu)
在我們的工作中,設計并實現(xiàn)了一種實時信號處理結(jié)構(gòu).它采用模塊化設計和線性流水陣列結(jié)構(gòu)(圖1).
這種線性流水陣列結(jié)構(gòu)具有如下特點:
·接口簡單.各處理單元(PU)之間采用統(tǒng)一的外部接口.
·易于擴充和維護.各個PU的內(nèi)部結(jié)構(gòu)完全相同,而且外部接口統(tǒng)一,所以系統(tǒng)很容易根據(jù)需要進行硬件的配置和擴充.當某個模塊出現(xiàn)故障時,也易于更換.
·處理模塊的規(guī)范結(jié)構(gòu)能夠支持多種處理模式,可以適應不同的處理算法.
每個PU的核心由DSP芯片和可重構(gòu)器件FPGA組成,另外還包括一些外圍的輔助電路,如存儲器、先進先出(FIFO)器件及FLASH ROM等(圖2).可重構(gòu)器件電路與DSP處理器相連,利用DSP處理器強大的I/O功能實現(xiàn)單元電路內(nèi)部和各個單元之間的通信.從DSP的角度來看,可重構(gòu)器件FPGA相當于它的宏功能協(xié)處理器(Co-processor).
PU中的其他電路輔助核心電路進行工作.DSP和FPGA各自帶有RAM,用于存放處理過程所需要的數(shù)據(jù)及中間結(jié)果.FLASH ROM中存儲了DSP的執(zhí)行程序和FPGA的配置數(shù)據(jù).先進先出(FIFO)器件則用于實現(xiàn)信號處理中常用到的一些操作,如延時線、順序存儲等.
每個PU單獨做成一塊PCB,各級PU之間通過插座與底板相連.底板的結(jié)構(gòu)很簡單,主要由幾個串連的插座構(gòu)成,其作用是向各個PU提供通信通道和電源供應.可以根據(jù)需要安排底板上插座的個數(shù),組成多級線性陣列結(jié)構(gòu).這種模塊化設計的突出優(yōu)點在于,它使得對系統(tǒng)的功能擴充和維護變得非常簡單.需要時,只要插上或更換PU電路板,就可以實現(xiàn)系統(tǒng)的擴展和故障的排除.每一級PU中的DSP都有通信端口與前級和后級PU電路板相連,可以很方便地控制和協(xié)調(diào)它們之間的工作.
4 應用實例
我們應用上述線性流水陣列結(jié)構(gòu)實現(xiàn)了一個實時目標檢測系統(tǒng),該系統(tǒng)的任務主要是接收攝像頭輸出的灰度圖象,經(jīng)預處理、編碼、直線擬合和目標識別后,輸出結(jié)果到PC機顯示.在這個任務中,預處理模塊包括抽樣、卷積和編碼等步驟,屬于低層的處理,其運算數(shù)據(jù)量大,但運算結(jié)構(gòu)較規(guī)則,適于用FPGA進行純硬件實現(xiàn);而直線擬合及目標識別等高層圖象處理算法,所處理的數(shù)據(jù)量相對較少,但要用到多種數(shù)據(jù)結(jié)構(gòu),其控制也復雜得多,我們用DSP編程來實現(xiàn).
重構(gòu)處理模塊采用的是Xilinx公司的XC5200系列FPGA芯片.這是一種基于SRAM的現(xiàn)場可編程門陣列.表1給出了XC5200 系列FPGA的一些參數(shù).
表1 XC5200系列FPGA的一些參數(shù)
器件 | XC5204 | XC5206 | XC5210 | XC5215 |
邏輯單元 | 480 | 784 | 1296 | 1936 |
最大邏輯門 | 6000 | 10000 | 16000 | 23000 |
多功能塊 | 10×12 | 14×14 | 18×18 | 22×22 |
CLB | 120 | 196 | 324 | 484 |
觸發(fā)器 | 480 | 784 | 1296 | 1936 |
I/O | 124 | 148 | 196 | 244 |
XC5200系列FPGA邏輯功能的實現(xiàn)由內(nèi)部規(guī)則排列的邏輯單元陣列(LCA)來完成,它是FPGA的主要部分.LCA的核心是可重構(gòu)邏輯塊(CLB),四周是一些輸入/輸出塊(IOB).CLB和IOB之間通過片內(nèi)的布線資源相連接.LCA由配置代碼驅(qū)動,CLB和IOB的具體邏輯功能及它們的互聯(lián)關系由配置數(shù)據(jù)決定.整個FPGA模塊的設計實現(xiàn)在Xilinx公司的Foundation 2.1i開發(fā)平臺上完成.該系統(tǒng)支持設計輸入、邏輯仿真、設計實現(xiàn)(設計綜合)和時序仿真等系統(tǒng)開發(fā)全過程.
我們選擇的是應用廣泛、性價比較高的TMS320C40芯片.它是美國TI公司推出的為滿足并行處理需求的32位浮點DSP.主要特性如下:
表2 常用微處理器對照表
處理器類型 | DSP(Motorola) | ADSP | TMS320 | ||||
96002 | 56156 | 21020 | 2101 | C30 | C40 | C50 | |
字長/bit | 32 | 16 | 32 | 16 | 32 | 32 | 16 |
指令周期/ns | 50 | 50 | 50 | 60 | 33 | 25 | 50 |
1024浮點FFT時間/ms | 1.04 | 2.33 | 0.96 | 2.07 | 2.36 | 1.93 | 3.42 |
·外部時鐘40MHz,內(nèi)部時鐘20MHz,所有指令均單周期完成,處理器內(nèi)部采用高度并行機制,可同時進行多達11項各類操作.
·兩套相同的外部數(shù)據(jù)、地址總線,支持局部存儲器和全局共享存儲器.
·6個高速并行通信口,采用異步傳輸方式,最大速率可達20Mb/s.通過令牌傳遞可靈活實現(xiàn)數(shù)據(jù)雙向傳輸,這種結(jié)構(gòu)很適合C40之間的互連.
·6個DMA通道,每個通道的最大速率可達20Mb/s.DMA內(nèi)部總線與CPU的地址、數(shù)據(jù)、指令總線完全分開,避開了總線使用上的瓶頸.
從結(jié)構(gòu)和功能上看,C40很適合與可重構(gòu)器件互相配合起來構(gòu)成高速、高精度的實時信息處理系統(tǒng),并完全可以勝任圖像信息的實時處理任務;此外,C40的開發(fā)系統(tǒng)也比較完備,支持C語言和匯編語言編程,能夠方便地進行算法移植和軟/硬件的協(xié)同設計.
衡量系統(tǒng)的整體性能不僅要看所使用的器件和所能完成的功能,還要看器件之間采用怎樣的互連結(jié)構(gòu).XC5200可以完成模塊級的任務,起到DSP的協(xié)處理器的作用.它的可編程性使它既具有專用集成電路的速度,又具有很高的靈活性.C40內(nèi)部結(jié)構(gòu)的主要優(yōu)勢是:所有指令的執(zhí)行時間都是單周期,指令采用流水線,內(nèi)部的數(shù)據(jù)、地址、指令及DMA總線分開,有較多的寄存器.這些特征使它有較高的處理速度.FPGA具有硬件的高速性,而C40具有軟件的靈活性,從器件上考察,能夠滿足處理復雜算法的要求.同時,C40的6個通信口和6個DMA通道使其能夠在不被中斷的情況下比較從容地應付與外界大量的數(shù)據(jù)交換.
從PU內(nèi)部互連來看,C40使用了專用的通信口完成與FPGA的互連,能夠保證在任何情況下FPGA與C40的數(shù)據(jù)通道的暢通.另外,FPGA和C40各自都有輸入端口,使得系統(tǒng)的處理結(jié)構(gòu)多樣化.比如,FPGA可以作為處理流程中的一個模塊,獨立完成某項功能,也可以作為C40的協(xié)處理器,通過C40的調(diào)用來完成特定的子函數(shù).底板將互連性延伸到PU之間,使得多個電路板能夠組成多處理機系統(tǒng).前級的C40既可以與下一級的C40通信,也可以將數(shù)據(jù)發(fā)送到下一級的FPGA.
綜上所述,本文提出的基于DSP+FPGA的線性流水陣列結(jié)構(gòu),為設計中如何處理軟硬件的關系提供了一個較好的解決方案.同時,該系統(tǒng)具有靈活的處理結(jié)構(gòu),對不同結(jié)構(gòu)的算法都有較強的適應能力,尤其適合實時信號處理任務.
評論