更高效電機(jī)驅(qū)動(dòng)的基本挑戰(zhàn)和解決方案
解決方案3:功率半導(dǎo)體器件支持
本文引用地址:http://m.butianyuan.cn/article/276351.htm功率電子設(shè)計(jì)中一個(gè)經(jīng)常討論的話題是功率模塊和分立功率半導(dǎo)體之間的選擇。有人可能會(huì)認(rèn)為使用分立器件的歷史習(xí)慣、物理布局的靈活性以及各個(gè)功率半導(dǎo)體廠家提供的廣泛可用部件都是致使功率模塊與分立器件之間爭(zhēng)論不休的因素。此外,從既定分立功率半導(dǎo)體器件轉(zhuǎn)換到功率模塊需要額外的客戶研發(fā)工作。這個(gè)選擇從來都不容易,也不明顯。需要考慮的3個(gè)關(guān)鍵因素和對(duì)應(yīng)的產(chǎn)物:
(1)電池/總線互聯(lián)、功率級(jí),和電機(jī)
● 效率;
● EMI/EMC。
(2)熱堆疊設(shè)計(jì)
● PCB 元件到散熱片熱阻;
● 可靠性、成本和產(chǎn)量。
(3)空間限制
僅僅為了降低成本而替換有效的分立解決方案,從而追求模塊解決方案,通常不是一個(gè)好主意。若分立器件不能滿足五個(gè)要求中的一個(gè)或多個(gè)要求,則功率模塊可能是最好的解決方案。五個(gè)要求是:(1)可靠性;(2)結(jié)構(gòu)緊湊;(3)電氣性能;(4)增值互聯(lián);(5)熱性能。
在電氣、機(jī)械和熱領(lǐng)域的交互方面出現(xiàn)關(guān)鍵挑戰(zhàn)。包括從直流電源到逆變功率級(jí)的高電流或低寄生效應(yīng)互聯(lián),逆變器與電機(jī)之間的高電流接口,從逆變器到支架結(jié)構(gòu)的穩(wěn)定機(jī)械互聯(lián),以及逆變功率器件和冷卻劑之間的高效熱互聯(lián)。冷卻劑或散熱器通常僅僅是熱空氣或高溫金屬。合適的功率模塊有助于解決這些挑戰(zhàn),同時(shí)還能實(shí)現(xiàn)各個(gè)因素與剛才強(qiáng)調(diào)的要求之間的平衡。
對(duì)于三相ACIM和BLDC變頻驅(qū)動(dòng),存在六個(gè)驅(qū)動(dòng)三個(gè)電機(jī)相位的晶體管。大多數(shù)線路電壓總線控制是 IGBT,因?yàn)楫?dāng)線路電壓、功率需求和工作溫度上升時(shí),IGBT具有卓越的傳導(dǎo)性能。線路電壓總線輸入和變頻驅(qū)動(dòng)器通常需要功率因數(shù)校正(PFC) 級(jí),以便最大化來自電網(wǎng)的功率級(jí)。在較低電壓如12V至48V電池/總線電壓下,MOSFET為首選并且是可行的,因?yàn)槠鋫鲗?dǎo)和開關(guān)性能通常超過 IGBT。從逆變器電路到電機(jī)的理想功率波形可以顯著提高效率。
設(shè)計(jì)分立器件與模塊時(shí)遇到的電氣挑戰(zhàn)
變頻的主要功能是產(chǎn)生可變電壓和可變頻率交流功率,用于驅(qū)動(dòng)必須體現(xiàn)卓越機(jī)電性能(包括高效率)的電機(jī)。12V的總線可能需要六個(gè)40V額定MOSFET(典型裸片Rds(on)為1.15 mΩ),才能實(shí)現(xiàn)高電流和高效率運(yùn)行?;蛘呔€路電壓總線和高電流應(yīng)用可能需要并聯(lián)的多個(gè)分立IGBT。根據(jù)特定的靜態(tài)和動(dòng)態(tài)驅(qū)動(dòng)特性來篩選IGBT成為生產(chǎn)之外的額外步驟,用于“匹配”IGBT,實(shí)現(xiàn)均流控制。若沒有匹配的IGBT,當(dāng)在高電流應(yīng)用中每個(gè)開關(guān)并聯(lián)多個(gè)部件時(shí),可能出現(xiàn)不想要的熱應(yīng)力不匹配。功率模塊讓硅器件承擔(dān)匹配IGBT的責(zé)任,讓最終用戶無需擔(dān)憂。模塊中集成了從電池到地的RC緩沖電路,緊密耦合到MOSFET橋以改進(jìn)EMI性能。 還包括用于電流感測(cè)的精密電流檢測(cè)電阻,可提供電流反饋,實(shí)現(xiàn)電機(jī)控制和過流保護(hù)。 另外,還有一個(gè)溫度感測(cè) NTC,用于監(jiān)控變頻器的發(fā)熱情況。
模塊通常直接安裝至電機(jī)外殼表面,允許控制PC僅沿模塊一側(cè)連接至信號(hào)引腳(圖2)。 分隔到模塊對(duì)面的電源引線允許完全隔離控制和電源接口,以便PCB上無需存在高電流引線,從而簡(jiǎn)化設(shè)計(jì)和生產(chǎn)。傳熱式直接敷銅(DBC)結(jié)構(gòu)在安裝表面和電氣有源組件之間提供2500 Vrms電氣隔離。
由于電源連接位于模塊一側(cè)并且與控制PCB隔離,設(shè)計(jì)具有非常低電感的電源連接就成為可能,從而為 MOSFET的直流連接濾波和BVDSS的設(shè)計(jì)留出額外裕量。類似地,由于模塊內(nèi)包含所有高電流傳導(dǎo)路徑,從 VBAT+到GND產(chǎn)生的極低總電阻有助于提高系統(tǒng)效率,允許提高總線電壓利用率,并最大化電機(jī)端子可用的電壓。 這樣系統(tǒng)設(shè)計(jì)人員在設(shè)計(jì)電機(jī)時(shí)就享有成本優(yōu)勢(shì)。
模塊內(nèi)部的MOSFET裸片可能位于緊密集成的RC濾波器元件附近,以便進(jìn)行高效的EMI抑制,減少電壓瞬變,并以最小的損耗順利實(shí)現(xiàn)開關(guān)過渡。
設(shè)計(jì)分立器件與模塊時(shí)遇到的機(jī)械挑戰(zhàn)
在采用分立包裝元件開發(fā)的變頻器中,比如TO-247、TO-263 (D2PAK) 或MO-299封裝,存在必須由變頻系統(tǒng)設(shè)計(jì)人員處理的更多機(jī)械接口。 包括MOSFET封裝至PCB、PCB至隔離散熱器、散熱器至散熱片,還可能由散熱片至下一級(jí)組件。 這些機(jī)械接口與系統(tǒng)的熱性能有密切聯(lián)系。在模塊解決方案中,大多數(shù)接口都包含到功率模塊結(jié)構(gòu)中,只剩下模塊到散熱片接口由變頻系統(tǒng)設(shè)計(jì)人員處理。 遵照 Fairchild對(duì)表面平滑度和安裝螺釘扭矩(或夾合力)的建議,可在變頻器生命周期內(nèi)實(shí)現(xiàn)卓越的熱性能和振動(dòng)性能。圖3顯示眾多通過安裝模塊滿足熱性能和振動(dòng)性能例子中的一個(gè)。正確的安裝方法還能夠擴(kuò)展產(chǎn)品的功率容量[3]。
設(shè)計(jì)分立模塊時(shí)影響可靠性的熱挑戰(zhàn)
與安裝在PCB或IMS上的六個(gè)或更多分立式MOSFET封裝部件相比,通過使用功率模塊的簡(jiǎn)化機(jī)械接口設(shè)計(jì)可獲得極好的熱性能。 為了舉例說明,圖4顯示Fairchild FTCO3V455A1 模塊所有六個(gè)MOSFET的結(jié)至殼以及典型結(jié)至散熱片瞬態(tài)熱阻[7]。 結(jié)至散熱片的熱阻假設(shè)為采用30微米膠層厚度,系數(shù)為2.1 W/(m-K)的導(dǎo)熱材料。
采用這種從散熱片到硅的簡(jiǎn)單堆疊,出色的熱性能使得整個(gè)變頻器可采用高功率密度的封裝。 AP的尺寸修剪為29 mm x 44 mm x 5 mm,可構(gòu)成約400 mL總?cè)萘康臉O緊湊變頻組件,包括繼電器、直流連接濾波器元件、控制PCB、散熱片和連接器。 工作條件下的功率循環(huán)和紋波溫度分析最終明確了使用電源時(shí)所需的封裝和焊線應(yīng)力[4]。
總結(jié)
將幾十年的線路驅(qū)動(dòng)交流電機(jī)替代為變頻驅(qū)動(dòng)的高效電機(jī)是一個(gè)節(jié)能的、對(duì)環(huán)境負(fù)責(zé)的趨勢(shì),由功率半導(dǎo)體器件和現(xiàn)代機(jī)器控制技術(shù)實(shí)現(xiàn)。采用模塊的低成本解決方案順應(yīng)需要和挑戰(zhàn),滿足環(huán)保、法規(guī)和客戶需求。汽車和商用/工業(yè)電機(jī)行業(yè)都在尋求替代能源并創(chuàng)建更高效系統(tǒng),從而減少傳統(tǒng)能耗并降低CO2排放率。
參考文獻(xiàn):
[1]IEA世界能源展望
[2]Han S.擴(kuò)展功率模塊的功率范圍[R/OL].Fairchild網(wǎng)站[2014-12-12]. http://blog.fairchildsemi.com/2014/attach-heatsink-spm-5-package/#.VGBak_nF-So
[3]FTCO3V455A1 3-Phase Inverter Automotive Power Module[R/OL].https://www.fairchildsemi.com/application-notes/AN/AN-4160.pdf
[4]Motion Control Design Tool[R/OL].https://www.fairchildsemi.com/design/design-tools/motion-control-design-tool/
pwm相關(guān)文章:pwm是什么
加速度計(jì)相關(guān)文章:加速度計(jì)原理 電子負(fù)載相關(guān)文章:電子負(fù)載原理 脈寬調(diào)制相關(guān)文章:脈寬調(diào)制原理 矢量控制相關(guān)文章:矢量控制原理
評(píng)論