GaN技術(shù)和潛在的EMI影響
1月出席DesignCon 2015時(shí),我有機(jī)會(huì)聽(tīng)到一個(gè)由Efficient Power Conversion 公司CEO Alex Lidow主講的有趣專題演講,談到以氮化鎵(GaN)技術(shù)進(jìn)行高功率開(kāi)關(guān)組件(Switching Device)的研發(fā)。我也有幸遇到“電源完整性 --在電子系統(tǒng)測(cè)量、優(yōu)化和故障排除電源相關(guān)參數(shù)(Power Integrity - Measuring, Optimizing, and Troubleshooting Power Related Parameters in Electronic Systems)”一書(shū)的作者Steve Sandler,他提出與測(cè)量這些設(shè)備的皮秒邊沿(Picosecond Edge)速度相關(guān)聯(lián)(可參看他文章索引的部分)。
本文引用地址:http://m.butianyuan.cn/article/277867.htm由于這些新電源開(kāi)關(guān)的快速開(kāi)關(guān)速度與相關(guān)更高效率,因此我們希望看到他們能適用于開(kāi)關(guān)模式電源和射頻(RF)功率放大器。他們可廣泛取代現(xiàn)有的金屬氧化物半導(dǎo)體場(chǎng)效晶體管(MOSFET), 且具有較低的“On”電阻、更小的寄生電容、更小的尺寸與更快的速度。我已注意到采用這些裝置的新產(chǎn)品,其他應(yīng)用包括電信直流對(duì)直流(DC-DC)、無(wú)線 電源(Wireless Power)、激光雷達(dá)(LiDAR)和D型音頻(Class D Audio)。很顯然,任何半導(dǎo)體組件在幾皮秒內(nèi)切換,很可能會(huì)產(chǎn)生大量的電磁干擾(EMI)。為了評(píng)估這些GaN組件,Sandler安排我來(lái)測(cè)試一些評(píng)估板。一塊我選擇測(cè)試的是Efficient Power Conversion的半橋(Half-bridge )1MHz DC-DC降壓轉(zhuǎn)換器EPC9101(圖1),請(qǐng)參考這塊測(cè)試板上的其他信息,以及一些其他的參考部分。
圖1該演示板用于顯示GaN的EMI。該GaN組件被圈定,我會(huì)在L1左側(cè)測(cè)量切換的波形。
該演示板利用8至19伏特(V)電流,并將其轉(zhuǎn)換為1.2伏20安培(A)(圖2),我讓它運(yùn)行在與10奧姆、2瓦(W)負(fù)載、10伏特電壓狀態(tài)。
圖2 半橋DC-DC轉(zhuǎn)換器的電路圖,波形在L1的左端返回處被測(cè)試。
我試圖用一個(gè)羅德史瓦茲(R&S)RT-ZS20 1.5 GHz的單端探頭捕獲邊緣速率(圖3),并探測(cè)L1的切換結(jié)束,不過(guò)現(xiàn)有測(cè)試設(shè)備的帶寬限制,以至于無(wú)法忠實(shí)捕捉。我能擷取到最好的(圖4)是一個(gè)1.5 納秒上升時(shí)間(其中,以EMI的角度來(lái)看,是相當(dāng)快的開(kāi)始!) 為準(zhǔn)確地記錄典型的300~500皮秒邊緣速度將需要30 GHz帶寬,或更高的示波器。
圖3 采用R&S RTE1104示波器和RT-ZS20 1.5 GHz的單端探頭測(cè)量前緣。
圖4 捕獲的上升時(shí)間顯示為217MHz,其顯示最快邊緣速度為1.5納秒,但事實(shí)上,是在帶寬限制下測(cè)量。
EMC相關(guān)文章:EMC是什么意思
評(píng)論