基于TMS320LF2407的FFT算法的實(shí)現(xiàn)
1 快速傅里葉變換的原理
本文引用地址:http://m.butianyuan.cn/article/150397.htm 非周期性連續(xù)時(shí)間信號(hào)x(t)的傅里葉變換可以表示為
式中計(jì)算出來的是信號(hào)x(t)的連續(xù)頻譜。但是,在實(shí)際的控制系統(tǒng)中能夠得到的是連續(xù)信號(hào)x(t)的離散采樣值x(nT)。因此需要利用離散信號(hào)x(nT)來計(jì)算信號(hào)x(t)的頻譜。
有限長(zhǎng)離散信號(hào)x(n),n=0,1,…,N-1的DFT定義為:
可以看出,DFT需要計(jì)算大約N2次乘法和N2次加法。當(dāng)N較大時(shí),這個(gè)計(jì)算量是很大的。利用WN的對(duì)稱性和周期性,將N點(diǎn)DFT分解為兩個(gè)N/2點(diǎn)的 DFT,這樣兩個(gè)N/2點(diǎn)DFT總的計(jì)算量只是原來的一半,即(N/2)2+(N/2)2=N2/2,這樣可以繼續(xù)分解下去,將N/2再分解為N/4點(diǎn) DFT等。對(duì)于N=2m 點(diǎn)的DFT都可以分解為2點(diǎn)的DFT,這樣其計(jì)算量可以減少為(N/2)log2N次乘法和Nlog2N次加法。圖1為FFT與DFT-所需運(yùn)算量與計(jì)算點(diǎn)數(shù)的關(guān)系曲線。由圖可以明顯看出FFT算法的優(yōu)越性。
將x(n)分解為偶數(shù)與奇數(shù)的兩個(gè)序列之和,即
x1(n)和x2(n)的長(zhǎng)度都是N/2,x1(n)是偶數(shù)序列,x2(n)是奇數(shù)序列,則
其中X1(k)和X2(k)分別為x1(n)和x2(n)的N/2點(diǎn)DFT。由于X1(k)和X2(k)均以N/2為周期,且WN k+N/2=-WN k,所以X(k)又可表示為:
上式的運(yùn)算可以用圖2表示,根據(jù)其形狀稱之為蝶形運(yùn)算。依此類推,經(jīng)過m-1次分解,最后將N點(diǎn)DFT分解為N/2個(gè)兩點(diǎn)DFT。圖3為8點(diǎn)FFT的分解流程。
FFT算法的原理是通過許多小的更加容易進(jìn)行的變換去實(shí)現(xiàn)大規(guī)模的變換,降低了運(yùn)算要求,提高了與運(yùn)算速度。FFT不是DFT的近似運(yùn)算,它們完全是等效的。
評(píng)論