慣性傳感器促進移動機器人自主工作
正向控制
機器人本體命令,即主要誤差信號,代表軌跡規(guī)劃器提供的行程計劃與反饋檢測系統(tǒng)提供的行程進度更新信息之間的差異。這些信號被饋入逆向運動學 系統(tǒng),后者將機器人本體命令轉換成每個車輪的轉向和速度配置文件。這些配置文件使用阿克曼轉向關系*進行計算,整合了輪胎直徑、表面接觸面積、間距和其他重要幾何特性。利用阿克曼轉向原理和關系,上述機器人平臺可創(chuàng)建以電子方式鏈接的轉向角度配置文件,類似于許多汽車轉向系統(tǒng)中使用的機械齒輪-齒條系統(tǒng)。由于這些關系是以遠程方式整合在一起的,不需要以機械方式鏈接車軸,因而有助于最大程度減小磨擦和輪胎滑移,減少輪胎磨損和能量損耗,實現簡單的機械鏈接無法完成的運動。
車輪驅動和轉向系統(tǒng)
每個車輪均有一個驅動軸,通過變速箱以機械方式連接至驅動馬達,同時通過另一個變速箱耦合至光學編碼器,即測程反饋系統(tǒng)的輸入端。轉向軸將車軸耦合至另一伺服馬達,該馬達負責確立車輪的轉向角度。轉向軸還將通過變速箱耦合至第二個光學編碼器,也即測程反饋系統(tǒng)的另一個輸入端。
反饋檢測和控制
導航系統(tǒng)使用一個增強的卡爾曼濾波器,通過結合多個傳感器的數據來估算行程圖上機器人的姿態(tài)。Seekur 上的測程數據從車輪牽引和轉向編碼器(提供轉換)和MEMS陀螺儀(提供旋轉)獲得。
測程
測程反饋系統(tǒng)利用光學編碼器對驅動和轉向軸旋轉的測量結果來估算機器人的位置、駛向和速度。在光學編碼器中,用一個碟片阻擋內部光源,或者通過數千個微小窗口讓光源照射在光傳感器上。碟片旋轉時,便會產生一系列電脈沖,這些脈沖通常被饋入計數器電路。每旋轉一圈的計數次數等于碟片內的槽孔數目,因此可從編碼器電路的脈沖計數計算旋轉數(包括小數)。圖4提供了將驅動軸旋轉計數轉換成線性位移(位置)變化的圖形參考和關系。
圖 4. 測程線性位移關系。
每個車輪的驅動軸和轉向軸編碼器測量結果在正向運動學 處理器中用阿克曼轉向公式進行組合,從而產生駛向、偏轉速率、位置和線速度等測量數據。
該測量系統(tǒng)的優(yōu)點在于其檢測功能直接與驅動和轉向控制系統(tǒng)相結合,因此可精確得知驅動和轉向控制系統(tǒng)的狀態(tài)。不過,除非可參考一組實際坐標,否則該測量系統(tǒng)在車輛實際速度和方向方面的精度有限。主要限制(或誤差源)在于輪胎幾何形狀一致性(圖 4 中 D 的精度和波動),以及輪胎與地面之間的接觸中斷。輪胎幾何形狀取決于胎冠一致性、胎壓、溫度、重量及在正常機器人使用過程中可能發(fā)生變化的所有條件。輪胎滑移則取決于偏轉半徑、速度和表面一致性。
位置檢測
Seekur系統(tǒng)使用多種距離傳感器。對于室內應用,該系統(tǒng)采用270°激光掃描器為其環(huán)境構建映射圖。激光系統(tǒng)通過能量返回模式和信號返回時間測量物體形狀、尺寸及與激光源的距離。在映射模式中,激光系統(tǒng)通過將工作區(qū)內多個不同位置的掃描結果組合,描述工作區(qū)特性(圖 5)。這樣便產生了物體位置、尺寸和形狀的映射圖,作為運行時掃描的參考。激光掃描器功能結合映射信息使用時,可提供精確的位置信息。該功能如果單獨使用,會存在一定限制,包括掃描時需要停機以及無法處理環(huán)境變化等等。在倉庫環(huán)境中,人員、叉車、托盤搬運車及許多其他物體常常會改變位置,這可能影響到達目的地的速度,以及到達正確目的地的精度。
評論