DC/DC電源模塊各方面性能與溫度的關(guān)系分析
圖3:變壓器電感量與溫度的關(guān)系
實(shí)驗(yàn)中還測試了電路中的輸入輸出的其他電感元件的電感量隨溫度的變化。在整個(gè)加熱階段,其他元件的電感量隨溫度變化很小,與變壓器電感量變化相比可以忽略。而且在變壓器電感量下降的階段,其他電感元件的電感量變化仍然較小。
為了校正環(huán)境溫度與模塊因自生熱升高的溫度,選擇一模塊,將模塊外殼穿孔,并將感溫線放到變壓器的圓孔內(nèi)部,測試變壓器的溫度,通過對測試數(shù)據(jù)處理,得到變壓器溫度與環(huán)境溫度的關(guān)系函數(shù):y=1.18x+13??梢娮儔浩鞯臏囟冗h(yuǎn)高于電源模塊的工作溫度。當(dāng)環(huán)境溫度為150℃,感溫線測試的結(jié)果約190℃,由于感溫線測試點(diǎn)是變壓器圓孔內(nèi)部的空氣,不是變壓器的磁芯溫度,因此感溫線的測量結(jié)果比實(shí)際的變壓器的溫度要低很多,由此可以判斷變壓器的磁芯溫度將接近居里點(diǎn),因此當(dāng)模塊的環(huán)境溫度超過150℃時(shí),模塊中變壓器的溫度將達(dá)到變壓器磁芯的居里點(diǎn)溫度,此時(shí)模塊的輸出電壓幾乎為零。
脈寬調(diào)制解調(diào)器(PWM)
PWM的主要功能是根據(jù)輸出反饋,調(diào)節(jié)脈沖波形的占空比,并驅(qū)動功率器件,從而得到穩(wěn)定的直流輸出電壓。
在該型號電源模塊中,PWM-SG3524的功能是提供兩路方波信號給三極管和VDMOS,并根據(jù)方波信號的寬度控制VDMOS的導(dǎo)通與關(guān)斷時(shí)間。在此試驗(yàn)中,對電路工作狀態(tài)的PWM-SG3524單獨(dú)加溫,并測試輸出方波信號與溫度的關(guān)系,測得波形沒有明顯變化;在加溫的同時(shí)對模塊的輸入、輸出電流電壓進(jìn)行記錄,發(fā)現(xiàn)隨著PWM所在環(huán)境溫度的升高輸入電流與輸入電壓變化都很小;輸出電壓與輸出電流變化也很小,加熱PWM導(dǎo)致電參數(shù)變化與模塊整體加熱電參數(shù)相比可以忽略。證明PWM-SG3524對模塊的溫度特性影響較小。
VDMOS
VDMOS(垂直雙擴(kuò)散場效應(yīng)晶體管)在模塊電路中作為開關(guān)器件,在感性負(fù)載下工作,承受高尖峰電壓和大電流,具有較高的開關(guān)損耗和溫升,其開關(guān)頻率可高達(dá)130 kHz,在這樣高的頻率下工作,可能引起內(nèi)部多種退化機(jī)制,導(dǎo)致VDMOS的性能下降,甚至失效。
在本實(shí)驗(yàn)中對模塊中的VDMOS單獨(dú)加溫,測試模塊電學(xué)參數(shù)的變化,通過測試得到當(dāng)溫度到180℃時(shí),輸入電流隨溫度的升高有較為明顯的增加。而輸出電壓、輸出電流隨溫度的升高變化較小。此外計(jì)算模塊的輸出效率,判斷模塊是否處在正常工作狀態(tài),通過計(jì)算可到對VDMOS單獨(dú)加熱到180℃時(shí),模塊的輸入電流迅速增加。而當(dāng)溫度升至220℃,輸出電壓幾乎沒有變化,由于模塊在150℃已經(jīng)失效,而此時(shí)單獨(dú)加熱溫度已經(jīng)高達(dá)180℃,遠(yuǎn)高于模塊整體加熱失效的溫度,因此VDMOS的溫度特性不是影響輸出電壓變化的原因。
二極管(SBD)
在模塊中使用的二極管有穩(wěn)壓二極管,整流二極管,其中整流二極管在電壓轉(zhuǎn)換過程中扮演了重要的角色。在變壓器的輸出端,兩個(gè)整流二極管在不同時(shí)段導(dǎo)通,使交流脈動電壓轉(zhuǎn)換為直流脈動。在本實(shí)驗(yàn)中,對電路中的SBD單獨(dú)加熱,發(fā)現(xiàn)隨著溫度的升高,模塊的輸出電壓沒有較明顯的變化。因此模塊在高溫工作的環(huán)境下,SBD不是引起模塊輸出電壓下降的主要因素。
光電耦合器
光電耦合器(以下簡稱光耦)以光為媒介傳輸電信號。它對輸入,輸出電信號有良好的隔離作用。光耦一般由3部分組成:光的發(fā)射、光的接收及信號放大。輸入的電信號驅(qū)動發(fā)光二極管(LED),使之發(fā)出一定波長的光,它被光探測器接收而產(chǎn)生光電流,再經(jīng)過進(jìn)一步放大后輸出。這就完成了電一光一電的轉(zhuǎn)換,從而起到輸入、輸出隔離的作用。由于光耦輸入輸出間互相隔離,電信號傳輸具有單向性等特點(diǎn),因而具有良好的電絕緣能力和抗干擾能力。
評論