新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 基于微型逆變器的太陽能系統(tǒng)優(yōu)化設(shè)計(jì)

基于微型逆變器的太陽能系統(tǒng)優(yōu)化設(shè)計(jì)

作者: 時(shí)間:2012-01-23 來源:網(wǎng)絡(luò) 收藏

對(duì)于的效率和可靠性而言,一種較新的手段是采用連接到每個(gè)板上的(micro-inverter)。為每塊面板配備單獨(dú)的使得可以適應(yīng)不斷變化的負(fù)荷和天氣條件,從而能夠?yàn)閱螇K面板和整個(gè)提供最佳轉(zhuǎn)換效率。

本文引用地址:http://m.butianyuan.cn/article/178015.htm

  架構(gòu)還可簡化布線,這也就意味著更低的安裝成本。通過使消費(fèi)者的太陽能發(fā)電系統(tǒng)更有效率,系統(tǒng)“收回”采用太陽能技術(shù)的最初投資所需的時(shí)間會(huì)縮短。

  電源逆變器是太陽能發(fā)電系統(tǒng)的關(guān)鍵電子組件。在商業(yè)應(yīng)用中,這些組件連接光伏(PV)面板、儲(chǔ)存電能的電池以及本地電力分配系統(tǒng)或公用事業(yè)電網(wǎng)。圖1顯示的是一個(gè)典型的太陽能逆變器,它把來自光伏陣列輸出的極低的直流電壓轉(zhuǎn)換成電池直流電壓、交流線路電壓和配電網(wǎng)電壓等若干種電壓。

  在一個(gè)典型的太陽能采集系統(tǒng)中,多個(gè)太陽能板并聯(lián)到一個(gè)逆變器,該逆變器將來自多個(gè)光伏電池的可變直流輸出轉(zhuǎn)換成干凈的50Hz或60Hz正弦波逆變電源。

  此外,還應(yīng)該指出的是,圖1中的微控制器(MCU)模塊TMS320C2000或MSP430通常包含諸如脈寬調(diào)制(PWM)模塊和A/D轉(zhuǎn)換器等關(guān)鍵的片上外設(shè)。


  圖1:傳統(tǒng)電源轉(zhuǎn)換架構(gòu)包含一個(gè)太陽能逆變器,它從PV陣列接收低DC輸出電壓并產(chǎn)生AC線路電壓。

  的主要目標(biāo)是盡可能提高轉(zhuǎn)換效率。這是一個(gè)復(fù)雜且需反復(fù)的過程,它涉及最大功率點(diǎn)跟蹤算法(MPPT)以及執(zhí)行相關(guān)算法的實(shí)時(shí)控制器。

  最大化電源轉(zhuǎn)換效率

  未采用MPPT算法的逆變器簡單地將光伏模塊與電池直接連接起來,迫使光伏模塊工作在電池電壓。幾乎無一例外的是,電池電壓不是采集最多可用太陽能的理想值。


  圖2說明了典型的75W光伏模塊在25℃電池溫度下的傳統(tǒng)電流/電壓特性。虛線表示的是電壓(PV VOLTS)與功率(PV WATTS)之比。實(shí)線表示的是電壓與電流(PV AMPS)之比。如圖2所示,在12V時(shí),輸出功率大約為53W。換句話說,通過將光伏模塊強(qiáng)制工作在12V,輸出功率被限制在約53W。

  但采用MPPT算法后,情況發(fā)生了根本變化。在本例中,模塊能實(shí)現(xiàn)最大輸出功率的電壓是17V。因此,MPPT算法的職責(zé)是使模塊工作在17V,這樣一來,無論電池電壓是多少,都能從模塊獲取全部75W的功率。

  高效DC/DC電源轉(zhuǎn)換器將控制器輸入端的17V電壓轉(zhuǎn)換為輸出端的電池電壓。由于DC/DC轉(zhuǎn)換器將電壓從17V降至12V,本例中,支持MPPT功能的系統(tǒng)內(nèi)電池充電電流是:(VMODULE/VBATTERY)×IMODULE,或(17V/12V)×4.45A =6.30A。

  假設(shè)DC/DC轉(zhuǎn)換器的轉(zhuǎn)換效率是100%,則充電電流將增加1.85A(或42%)。

  雖然本例假設(shè)逆變器處理的是來自單個(gè)太陽能面板的能量,但傳統(tǒng)系統(tǒng)通常是一個(gè)逆變器連接多個(gè)面板。取決于應(yīng)用的不同,這種拓?fù)浼扔袃?yōu)點(diǎn)又有缺點(diǎn)。

  MPPT算法

  主要有三種類型的MPPT算法:擾動(dòng)-觀察法、電導(dǎo)增量法和恒定電壓法。前兩種方法通常稱為“爬山”法,因?yàn)樗鼈?a class="contentlabel" href="http://m.butianyuan.cn/news/listbylabel/label/基于">基于如下事實(shí):在MPP的左側(cè),曲線呈上升趨勢(dP/dV>0),而在MPP右側(cè),曲線下降(dP/dV 0)。

  擾動(dòng)-觀察(P&O)法是最常用的。該算法按給定方向擾動(dòng)工作電壓并采樣dP/dV。如果dP/dV為正,算法就“明白”它剛才是在朝著MPP調(diào)整電壓。然后,它將一直朝這個(gè)方向調(diào)整電壓,直到dP/dV變負(fù)。

  P&O算法很容易實(shí)現(xiàn),但在穩(wěn)態(tài)運(yùn)行中,它們有時(shí)會(huì)在MPP附近產(chǎn)生振蕩。而且它們的響應(yīng)速度也慢,甚至在迅速變化的氣候條件下還有可能把方向搞反。

  電導(dǎo)增量(INC)法使用光伏陣列的電導(dǎo)增量dI/dV來計(jì)算dP/dV的正負(fù)。INC能比P&O更準(zhǔn)確地跟蹤迅速變化的光輻照狀況。但與PO一樣,它也可能產(chǎn)生振蕩并被迅速變化的大氣條件所“蒙騙”。其另一個(gè)缺點(diǎn)是,增加的復(fù)雜性會(huì)延長計(jì)算時(shí)間并降低采樣頻率。

  第三種方法“恒壓法”則如下事實(shí):一般來說,VMPP/VOC≈0.76。該方法的問題來源于它需要瞬間把光伏陣列的電流調(diào)為0以測量陣列的開路電壓。然后,再將陣列的工作電壓設(shè)置為該測定值的76%。但在陣列斷開期間,可用能量被浪費(fèi)掉了。人們還發(fā)現(xiàn),雖然開路電壓的76%是個(gè)很好的近似值,但也并非總是與MPP一致。

  由于沒有一個(gè)MPPT算法可以成功地滿足所有常見的使用環(huán)境要求,許多工程師會(huì)讓系統(tǒng)先*估環(huán)境條件再選擇最適合當(dāng)時(shí)環(huán)境條件的算法。事實(shí)上,有許多MPPT算法可用,太陽能面板制造商提供他們自己算法的情況也屢見不鮮。

  對(duì)廉價(jià)控制器來說,除了MCU本份的正常控制功能外,執(zhí)行MPPT算法絕非易事,該算法需要這些控制器具有高超的計(jì)算能力。諸如德州儀器C2000平臺(tái)系列的先進(jìn)32位實(shí)時(shí)微控制器就適合于各種太陽能應(yīng)用。

  電源逆變器

  使用單個(gè)逆變器有許多好處,其中最突出的是簡單和低成本。采用MPPT算法和其它技術(shù)提高了單逆變器系統(tǒng)的效率,但這只是在一定程度上。根據(jù)應(yīng)用的不同,單個(gè)逆變器拓?fù)涞娜秉c(diǎn)會(huì)很明顯。最突出的是可靠性問題:只要這個(gè)逆變器發(fā)生故障,那么在該逆變器被修好或更換前,所有面板產(chǎn)生的能量都浪費(fèi)掉了。

  即使逆變器工作正常,單逆變器拓?fù)湟部赡軐?duì)系統(tǒng)效率產(chǎn)生負(fù)面影響。在大多數(shù)情況下,為達(dá)到最高效率,每個(gè)太陽能電池板都有不同的控制要求。決定各面板效率的因素有:面板內(nèi)所含光伏電池組件的制造差異、不同的環(huán)境溫度、陰影和方位造成的不同光照強(qiáng)度(接收到的太陽原始能量)。

  與整個(gè)系統(tǒng)使用一個(gè)逆變器相比,為系統(tǒng)內(nèi)每個(gè)太陽能電池板都配備一個(gè)微型逆變器會(huì)再次提升整個(gè)系統(tǒng)的轉(zhuǎn)換效率。微型逆變器拓?fù)涞闹饕锰幨?,即便其中一個(gè)逆變器出現(xiàn)故障,能量轉(zhuǎn)換仍能進(jìn)行。

  采用微型逆變器的其它好處包括能夠利用高分辨率PWM調(diào)整每個(gè)太陽能板的轉(zhuǎn)換參數(shù)。由于云朵、陰影和背陰會(huì)改變每個(gè)面板的輸出,為每個(gè)面板配備獨(dú)有的微型逆變器就允許系統(tǒng)適應(yīng)不斷變化的負(fù)載情況。這為各面板及整個(gè)系統(tǒng)都提供了最佳轉(zhuǎn)換效率。

  微型逆變器架構(gòu)要求每個(gè)面板都有一個(gè)專用MCU來管理能源轉(zhuǎn)換。不過,這些附加的MCU也可被用來改善系統(tǒng)和面板的監(jiān)測。

  例如,大型的太陽能發(fā)電場就受益于面板間的通信以幫助保持負(fù)載平衡并允許系統(tǒng)管理員事先計(jì)劃有多少能量可用,以及用這些能量做什么。不過,為充分利用系統(tǒng)監(jiān)測的好處,MCU必須集成片上通信外圍設(shè)備(CAN、SPI、UART等)以便簡化與太陽能陣列內(nèi)其它微型逆變器的接口。


上一頁 1 2 下一頁

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉