新聞中心

EEPW首頁(yè) > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 耗盡型工藝實(shí)現(xiàn)鋰電池充電保護(hù)芯片的設(shè)計(jì)

耗盡型工藝實(shí)現(xiàn)鋰電池充電保護(hù)芯片的設(shè)計(jì)

作者: 時(shí)間:2011-10-28 來源:網(wǎng)絡(luò) 收藏
2.2 過、過放電遲滯電路

本文引用地址:http://m.butianyuan.cn/article/178467.htm

  為了更快地解除過、過放電狀態(tài), 圖1 中過、過放電比較器的輸入差分電壓須隨電源電壓的改變而改變, 當(dāng)電池過充或過放時(shí), 輸出電壓隨電源電壓變化的比例不同, 因此出圖4 所示的遲滯電路。

 由圖4 可知, 通過控制TCU 和TDL 的開關(guān)來控制MN1 和MP1 的導(dǎo)通與關(guān)斷, 達(dá)到調(diào)節(jié)點(diǎn)IN_CON 和IN_ODP 電壓大小的目的, 以遲滯效應(yīng)。當(dāng)輸出信號(hào)在和過充比較器和過放比較器相比較時(shí), 比較基準(zhǔn)電壓不變, 計(jì)算過充電、過放電的遲滯電壓分別為:

  由式( 12) 和( 13) 可知, 根據(jù)具體要求的不同, 調(diào)節(jié)R26、R27、R28、R29、R30 和R31 的大小及比例關(guān)系以達(dá)到不同遲滯電壓的目的。

  2.3 0 V電池充電禁止電路

  當(dāng)電池電壓低于一定值時(shí), 使CO 輸出為低電平從而禁止充電器對(duì)電池進(jìn)行充電。在此過程中因?yàn)閂DD 比較低VM 會(huì)變得很負(fù), 所以VDD 和VM 之間易形成很大的電流, 則VDD 到VM 之間的每一條支路上要有比較大的電阻。采用如圖5 所示的電路來控制CO 的電壓和VDD 到VM 之間的電流。

  圖5 中M1、M2、M3、M4、Rl 和R2 組成的電路完成電平轉(zhuǎn)換功能, 抑制功能主要由M5、M6 和R3完成, M7、M8、M9、M10 和R4 組成的與非門在電平轉(zhuǎn)換功能和0 V 抑制功能之間進(jìn)行選擇。電路需要將邏輯低電平轉(zhuǎn)化為與VM 相同的電位。而VM的電位有可能很負(fù), 在電路轉(zhuǎn)換瞬間, VDD 和VM之間的高電壓很容易將普通的MOS 管擊穿,基于此, 本電路的所有管子都采用高壓非對(duì)稱管。

  0 V 電池抑制功能發(fā)生在充電過程中, 此時(shí),IN_ LCB=0, IN_ LC=1,VA 為高電平。當(dāng)電池電壓VDD 在1.2 V 左右時(shí), 就認(rèn)為它是內(nèi)部短路。在這種情況下充電, 充電電流一定很大, 導(dǎo)致VM 的電位下降很大, VDD 的下降使M5 關(guān)閉, VM 的下降使M6 導(dǎo)通, 從而VB 由低電平轉(zhuǎn)化為高電平(此時(shí)的VDD 電壓為0 V 電池充電禁止電壓V0INH) , CO 電位因此接近VM 電位。

  模擬結(jié)果如圖6 顯示, 在VDD 降到1V 以下時(shí),CO 端輸出與VM 相同的電平, 關(guān)斷充電回路, 0V 電池充電禁止功能。

  3 的測(cè)試結(jié)果

  采用0.6 μm、n 阱的CMOS , 的電特性參數(shù)測(cè)試結(jié)果如表1 所示。其中T 表示溫度,在沒有特殊說明的情況下均為T=25 ℃。表1 表明所滿足寬的電壓工作范圍、寬的溫度工作范圍和低功耗的特點(diǎn)。

表1 CMOS 芯片的電特性

  4 結(jié)語(yǔ)

  本文對(duì)單節(jié)鋰離子電池的充電芯片的功能原理進(jìn)行了闡述, 詳細(xì)分析了基于的關(guān)鍵電路設(shè)計(jì)原理, 重點(diǎn)分析了基于的低功耗基準(zhǔn)電壓源的設(shè)計(jì), 測(cè)試結(jié)果顯示所設(shè)計(jì)的芯片滿足低功耗、低成本、寬工作電壓范圍的要求,可用于便攜式電子產(chǎn)品和醫(yī)療測(cè)試儀器的鋰離子電池的一級(jí)。


上一頁(yè) 1 2 3 下一頁(yè)

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉