新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 一種LED路燈光伏充電器的設(shè)計(jì)

一種LED路燈光伏充電器的設(shè)計(jì)

作者: 時(shí)間:2011-10-12 來源:網(wǎng)絡(luò) 收藏

提出了新型的智能化小區(qū)大功率Light Emitting Diode ()路方案, 給出了白光的工作特性和太陽電池的工作特性以及此光伏的主電路拓?fù)浣Y(jié)構(gòu), 分析了基于Microchip 公司的PIC16F874芯片實(shí)現(xiàn)的控制策略和最大功率跟蹤( MPPT) 原理。最后給出了此的工作原理框圖和控制原理框圖。實(shí)際運(yùn)行表明, 該伏充電器系統(tǒng)具有顯著優(yōu)點(diǎn)。

本文引用地址:http://m.butianyuan.cn/article/178528.htm

  1 系統(tǒng)構(gòu)成

  1.1 LED 的工作特性

  發(fā)光二極管LED(Light Emitting Diode)的工作原理是在半導(dǎo)體p-n 結(jié)上加一正向電壓, 從而使其電子與空穴復(fù)合(即結(jié)區(qū)變窄), 這種復(fù)合是電子從高能級的導(dǎo)帶釋放能量回到價(jià)帶與空穴復(fù)合, 其釋放的能量以光子的形式出現(xiàn), 即發(fā)光。

  根據(jù)半導(dǎo)體物理中的公式: λ=1.24/Eg式中: Eg 為半導(dǎo)體材料導(dǎo)帶與價(jià)帶之間的禁帶寬度, λ為波長。從式中可以看出, 對于不同材料的半導(dǎo)體來說, 由于它們的Eg 不同, 因此它們的波長# 也不一樣, 所以發(fā)光的顏色不同。顯然, 一般LED 多為單顏色光, 如紅光、綠光、黃光、藍(lán)光等。所謂白光是多種顏色的光混合而成, 以人類眼睛所能見到的白光形式至少必須兩種以上的光混合, 一般有下列兩種混合方式: 二波長光———藍(lán)光與黃光混合; 三波長光———紅光、綠光與藍(lán)光混合。目前已經(jīng)商品化的白光LED 產(chǎn)品多為二波段藍(lán)光單晶片加上YAG 黃色熒光粉; 三波長光以無機(jī)紫外線光晶片加R、G、B 三顏色熒光粉。此外, 有機(jī)單層三波長型白光LED 也有成本低、制作容易等優(yōu)點(diǎn)。

  1.2 太陽電池的工作特性

  圖1、圖2 分別給出了太陽電池溫度在25 ℃時(shí), 工作電壓、電流和日照( W/m2) 的關(guān)系曲線及太陽電池的輸出功率和日照、電壓之間的曲線。

  

  從圖1 的I/U 關(guān)系可以看出, 太陽電池陣列既非恒壓源,也非恒流源, 而是非線性直流電源, 電池輸出電流在大部分工作電壓范圍內(nèi)相當(dāng)恒定, 最終在一個(gè)足夠高的電壓之后,電流迅速下降至零。由圖2 可知, 太陽電池的工作效率等于輸出功率與投射到太陽電池面積上的功率之比。因此, 為了提高本系統(tǒng)的工作效率, 必須盡可能地使太陽電池在最大功率點(diǎn)處工作, 這樣就可以用功率盡可能小的太陽電池獲得最大的功率輸出, 這就是進(jìn)行最大功率點(diǎn)跟蹤的意義所在。如圖1 和圖2 所示, 圖中的A、B、C、D、E 點(diǎn)分別對應(yīng)不同日照時(shí)的最大功率點(diǎn)。

  1.3 鉛酸蓄電池的工作特性

  目前在光伏充電器系統(tǒng)中大量使用的是鉛酸蓄電池, 它的工作原理是依靠鉛酸正極的活性物質(zhì)二氧化鉛( PbO2) 和負(fù)極的活性物質(zhì)海綿狀鉛( Pb) 與電解液硫酸( H2SO4) 進(jìn)行化學(xué)反應(yīng)生成硫酸鉛( PbSO4) , 在此工作過程中將引起硫酸( H2SO4) 的減少, 而且在正極板上不斷生成水( H2O) , 從而引起電解液的密度降低。在充電期間, 正極極板上的硫酸鉛( PbSO4) 氧化成了二氧化鉛( PbO2) , 此時(shí)負(fù)極極板上的硫酸鉛( PbSO4) 還原成鉛( Pb) , 同時(shí)生成硫酸( H2SO4) , 耗去了蓄電池中的水( H2O) , 使電池中電解液的密度上升, 完成充電過程。

  2 系統(tǒng)的工作原理

  2.1 系統(tǒng)的主控制芯片介紹

  充電器系統(tǒng)的硬件框圖如圖3 所示。

  

  主控芯片采用Microchip 公司的PIC16F874, 它采用RISC 指令系統(tǒng), 哈佛總線結(jié)構(gòu), 低功耗, 高速度。內(nèi)部集成了ADC、SPI 和Flash 程序存儲器等模塊, 具有10 位A/ D 轉(zhuǎn)換、PWM 輸出、LCD 驅(qū)動等功能, 此外它還帶有128 個(gè)字節(jié)的E2PROM 存儲器, 能方便寫入調(diào)整量以備后用。PIC16F874通過SPI 接口可以實(shí)現(xiàn)與CAN 控制器MCP2510 的無縫連接, 且同時(shí)同步串行模塊( SSP) 為以后與工控機(jī)聯(lián)網(wǎng)奠定了基礎(chǔ)。PIC16F874 的I/O 資源豐富, 共有A、B、C、D、E 五個(gè)I/O口, 每個(gè)I/O 口除了基本用途外還有一些特殊功能。豐富的資源和強(qiáng)大的功能, 使之十分適合于作為控制系統(tǒng)的控制核心芯片。

  2.2 系統(tǒng)的工作過程分析

  充電器系統(tǒng)的控制框圖如圖4 所示。

  

  由圖4 可以看出, 在蓄電池充電階段, 控制回路電壓環(huán)僅由太陽電池電壓構(gòu)成。此時(shí), 電壓環(huán)的輸出為電流環(huán)的給定,通過檢測主電路中蓄電池的充電電流與給定電流相比較來改變SG3525 的輸出脈沖寬度, 使太陽電池的電壓跟蹤給定電壓。由圖1 可知, 當(dāng)太陽電池電壓下降, 在穩(wěn)態(tài)時(shí), 太陽電池電壓等于給定電壓, 電流環(huán)的給定亦為穩(wěn)定值, 蓄電池的充電電流等于給定電流; 反之, 當(dāng)太陽電池電壓小于給定電壓時(shí),SG3525 輸出脈沖寬度作用于驅(qū)動電路以驅(qū)動功率器件, 使其導(dǎo)通占空比減小, 蓄電池充電電流變小, 工作電壓增加, 電路達(dá)到穩(wěn)態(tài)時(shí)太陽電池電壓等于給定電壓。在過充電階段, 兩個(gè)電路均起作用, 電壓環(huán)由太陽電池電壓構(gòu)成的電路和蓄電池構(gòu)成的電路組成, 此時(shí), 蓄電池電壓和給定太陽電池工作電壓之和大于太陽電池電壓, 偏差信號經(jīng)過PI 調(diào)節(jié)后加到SG3525 的電流輸入端, 使SG3525 輸出脈沖寬度減小, 蓄電池充電電流變小。由圖1 可知, 太陽電池實(shí)際工作電壓漸漸增大, 直到穩(wěn)態(tài)時(shí), 工作于開路狀態(tài), 蓄電池充電電流為零, 從而實(shí)現(xiàn)了過充保護(hù)。

  此外可以通過Modbus 通信標(biāo)準(zhǔn)使模塊控制器以主( 即上位機(jī)) —從( 即下位機(jī)) 方式進(jìn)行通信, 對光伏充電器的運(yùn)行情況和LED 燈的運(yùn)行情況通過若干控制器或其它Modbus設(shè)備通過RS485 總線組建成Modbus 網(wǎng)絡(luò), 可以成功地實(shí)現(xiàn)網(wǎng)絡(luò)化遠(yuǎn)程監(jiān)控系統(tǒng)。


上一頁 1 2 下一頁

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉