太陽(yáng)能中溫?zé)峁芙邮掌髟O(shè)計(jì)研究
熱管技術(shù)已成功應(yīng)用于太陽(yáng)能低太陽(yáng)能集熱器、復(fù)合拋物面聚光器(CPC)熱管式太陽(yáng)能集熱器等。
本文引用地址:http://m.butianyuan.cn/article/178776.htm近年來,為降低拋物面槽式太陽(yáng)能電站的成本,研究者提出用直接產(chǎn)蒸汽(DSG)系統(tǒng)代替?zhèn)鹘y(tǒng)槽式太陽(yáng)能電站的雙回路系統(tǒng)(包括導(dǎo)熱油回路和水循環(huán)2個(gè)回路),省去導(dǎo)熱油回路后系統(tǒng)效率顯著提高。
但也帶來了一系列新的問題:DSG系統(tǒng)中接收器吸熱管周向溫差較大,汽水混合物對(duì)管路的沖擊,導(dǎo)致接收器可靠性較差,容易產(chǎn)生彎曲、顫動(dòng)甚至損壞玻璃套管。熱管具有優(yōu)良的等溫性、蒸發(fā)段與冷凝段分離,可以很好地解決DSG系統(tǒng)中接收器的問題,提高接收器可靠性。筆者采用中研究。
1 太陽(yáng)能中溫?zé)峁芙邮掌鞯慕Y(jié)構(gòu)
中溫?zé)峁芙邮掌饔芍袦責(zé)峁?、玻璃套管組成,熱管的蒸發(fā)段外罩單層玻璃套管,蒸發(fā)段一端通過玻璃—金屬密封件與玻璃套管連接,另一端由支撐件支撐,構(gòu)成接收器的吸熱段;熱管的冷凝段伸人夾套內(nèi)構(gòu)成接收器的放熱段。熱管蒸發(fā)段外表面涂高溫選擇性吸收涂層,作為吸熱層,熱管蒸發(fā)段與冷凝段分離,接收器的吸熱段與放熱段也相應(yīng)分離,如圖1所示。
2 模擬試驗(yàn)研究
拋物面槽式太陽(yáng)能集熱器工作過程中,接收器面對(duì)聚光器的一面與背對(duì)聚光器的一面接收到的熱流密度之比為62:1,這也是導(dǎo)致接收器周向溫差過大的主要原因。試驗(yàn)中采用電爐加熱模擬中溫?zé)峁芙邮掌魇軣釛l件,在熱管蒸發(fā)段(即熱管位于爐膛中的部分)的上表面加2層厚為4[nln的玻璃纖維帶,阻隔電爐對(duì)熱管的輻射換熱,實(shí)現(xiàn)對(duì)中溫?zé)峁芙邮掌鲗?shí)際工作條件的模擬。中溫?zé)峁芙邮掌髟囼?yàn)中熱管工作傾角為4℃。
2.1 模擬試驗(yàn)系統(tǒng)
試驗(yàn)系統(tǒng)包括計(jì)量泵、脈沖阻尼器、電爐、冷卻器、背壓閥及數(shù)據(jù)采集系統(tǒng),如圖2所示。脈沖阻尼器用于平衡計(jì)量泵產(chǎn)生的流量波動(dòng),確保管路中水壓力、流量穩(wěn)定。背壓閥起背壓作用,調(diào)控閥前管路壓力。測(cè)量系統(tǒng)由安捷倫數(shù)據(jù)采集儀、熱電偶、計(jì)算機(jī)、壓力表、流量計(jì)組成,測(cè)量熱管溫度、進(jìn)出口水溫、系統(tǒng)壓力、流量。熱電偶布置見圖3,熱管管壁沿軸向與3個(gè)橫截面圓周方向均布置K型熱電偶,測(cè)量熱管管壁軸向溫度與周向溫度分布,夾套進(jìn)出口處布置E型熱電偶。熱電偶直接焊在熱管管壁上,測(cè)溫點(diǎn)外面覆蓋2—3 mm厚的高溫膠,避免爐膛輻射對(duì)熱電偶測(cè)溫準(zhǔn)確性的影響。
圖2 試驗(yàn)系統(tǒng)示意圖
圖3 熱電偶布置
熱管傳輸功率Q:
式中:c。為比熱容,J/(kg·℃);rh為質(zhì)量流量,kg/s;
熱管蒸發(fā)段傳熱系數(shù):
式中:疋為熱管蒸發(fā)段平均溫度,通過測(cè)量熱管蒸發(fā)段管壁正上方各點(diǎn)及3個(gè)截面上各點(diǎn)溫度平均得到;瓦為熱管絕熱段溫度;Ah為熱管蒸發(fā)段表面積。
熱管冷凝段傳熱系數(shù):
式中:TC為熱管冷凝段平均溫度,通過測(cè)量熱管絕熱段緊鄰冷凝段正下方的管壁溫度得到;AHPC為冷凝段表面積。
處在蒸發(fā)段不同位置3個(gè)截面的溫度分布趨勢(shì)不同,因此,選擇3個(gè)截面的最大周向溫差的平均值作為熱管性能評(píng)價(jià)參數(shù)。
電接點(diǎn)壓力表相關(guān)文章:電接點(diǎn)壓力表原理
評(píng)論