成功進(jìn)行模數(shù)信號(hào)轉(zhuǎn)換的七個(gè)步驟
振動(dòng)、溫度、壓力和光等現(xiàn)實(shí)世界的信號(hào)需要精確的信號(hào)調(diào)理和信號(hào)轉(zhuǎn)換,然后才能在數(shù)字域中進(jìn)行進(jìn)一步數(shù)據(jù)處理。為了克服當(dāng)前高精度應(yīng)用的多種挑戰(zhàn),需要一個(gè)精心設(shè)計(jì)的低噪聲模擬前端來實(shí)現(xiàn)最佳信噪比(SNR)。許多系統(tǒng)既負(fù)擔(dān)不起最昂貴的器件,也無法承受低噪聲器件的更高功耗。本文提出了一種系統(tǒng)的方法來設(shè)計(jì)一個(gè)增益模塊和ADC組合,并給出一個(gè)支持此方法的實(shí)例。在調(diào)理低頻(接近dc)信號(hào)時(shí),該電路進(jìn)行噪聲計(jì)算和分析。
圖1 典型信號(hào)調(diào)理鏈
設(shè)計(jì)模擬前端時(shí),請遵循以下七個(gè)步驟:
1) 描述傳感器或增益模塊前部的電氣輸出
2) 計(jì)算ADC的需求
3) 為信號(hào)轉(zhuǎn)換找到最佳ADC + 基準(zhǔn)電壓
4) 為運(yùn)算放大器找到最大增益并定義搜索條件
5) 找到最佳放大器并設(shè)計(jì)增益模塊
6) 根據(jù)設(shè)計(jì)目標(biāo)檢查解決方案總噪聲
7) 運(yùn)行模擬并驗(yàn)證
第1步:描述傳感器或增益模塊前部的電氣輸出
信號(hào)可能直接來源于傳感器,也可能在到達(dá)增益模塊之前經(jīng)過EMI和RFI濾波器。為了設(shè)計(jì)增益模塊,必須知道信號(hào)的ac和dc特性以及可用的電源。知道了信號(hào)的特性和噪聲電平后,我們就能知道選擇ADC時(shí)需要何種輸入電壓范圍和噪聲電平。假設(shè)有一個(gè)傳感器,以250 mV p-p(88.2 mV rms)和25 μV p-p噪聲的滿量程幅度輸出一個(gè)10kHz信號(hào)。我們進(jìn)一步假設(shè)系統(tǒng)中有一個(gè)可用的5V電源。有了這些信息,我們應(yīng)該能計(jì)算出第2步中的ADC輸入端的信噪比。為簡化數(shù)據(jù)處理和避免混淆,假設(shè)我們將該解決方案設(shè)計(jì)為在室溫下工作。
第2步:計(jì)算ADC的需求
我們需要何種ADC、采樣速率如何、多少位、噪聲指標(biāo)如何?若從第一步知道了輸入信號(hào)幅度以及噪聲信息,我們就能計(jì)算出增益模塊輸入端的信噪比(SNR)。我們需要選擇一個(gè)有更佳信噪比的ADC。在選擇ADC時(shí),知道SNR將有助于我們計(jì)算有效位數(shù)(ENOB)。此關(guān)系表達(dá)式如下。
理想的ADC數(shù)據(jù)手冊總會(huì)標(biāo)出SNR和ENOB。此例中所需要的86.8 dB SNR和14.2位ENOB決定了我們應(yīng)選擇一個(gè)16位的模數(shù)轉(zhuǎn)換器。此外,奈奎斯特準(zhǔn)則要求采樣率(fs)應(yīng)至少兩倍于最大輸入頻率(fin),因此一個(gè)20-kSPS ADC應(yīng)該就已足夠。下一步我們需要設(shè)計(jì)總體解決方案,使得噪聲密度不超過416 nV/rt-Hz。
第3步:為信號(hào)轉(zhuǎn)換找到最佳ADC+基準(zhǔn)電壓
有了一系列的搜索條件,我們就有許多種方法找到合適的ADC。要找到一個(gè)16位ADC,最簡單的方法之一就是使用廠商網(wǎng)站上的搜索工具。輸入分辨率與采樣速率,就可找到許多推薦的ADC。
許多16位的ADC滿足14.5位ENOB需求。如果您想得到更佳的噪聲性能,可使用過采樣迫使ENOB達(dá)到16位(由4^n過采樣得到n位增強(qiáng))。通過過采樣,您可以使用較低分辨率的ADC:256過采樣的12位ADC(4^4過采樣)可得到16位噪聲性能。在我們的例子中,這意味著5.126 MHz采樣率的12位ADC(20 kSPS × 256),或是4^2過采樣的14位ADC;若1.28 MSPS則更佳。然而這些選擇的成本卻和AD7685(16位、250 kSPS ADC)相當(dāng)。
圖2 典型的ADC選型表
從列表中我們選擇了AD7685(16位PulSAR ADC)。該轉(zhuǎn)換器具有90-dB SNR和250 ksps采樣率,符合我們的需要。此ADC推薦搭配使用ADR421/ADR431精密XFET基準(zhǔn)電壓源。2.5-V的輸入范圍超過了我們需要的250-mV p-p輸入特性
AD7685參考輸入具有動(dòng)態(tài)輸入阻抗,因此需進(jìn)行去耦以使寄生電感最小(方法是在引腳附近放置一個(gè)陶瓷去耦電容,并用較寬的低阻抗走線進(jìn)行連接)。一個(gè)22 μF陶瓷芯片電容可提供最佳性能。
第4步:為運(yùn)算放大器找到最大增益并定義搜索條件
有了ADC的輸入電壓范圍將有助于我們設(shè)計(jì)增益模塊。為了最大化動(dòng)態(tài)范圍,我們需要在給定的輸入信號(hào)和ADC輸入范圍內(nèi)選取盡可能高的增益。這意味著我們可以將該例子中的增益模塊設(shè)計(jì)成具有10倍的增益。
雖然AD7685很容易驅(qū)動(dòng),但驅(qū)動(dòng)放大器需要滿足某些要求。例如,為保持AD7685的SNR和轉(zhuǎn)換噪聲性能,驅(qū)動(dòng)放大器產(chǎn)生的噪聲必須盡可能低,但要注意增益模塊可同時(shí)放大信號(hào)和噪聲。若要使得噪聲在增益模塊前后都保持不變,我們需要選擇具有更低噪聲值的放大器和相關(guān)元件。此外,驅(qū)動(dòng)器的THD性能應(yīng)與AD7685相當(dāng),并且必須使ADC電容陣列以16位水平(0.0015%)建立滿量程階躍。來自放大器的噪聲可使用外部濾波器進(jìn)一步過濾。
運(yùn)算放大器的輸入端允許多大的噪聲?牢記我們設(shè)計(jì)的總體解決方案的噪聲密度不超過416 nV/rt-Hz。我們設(shè)計(jì)的增益模塊應(yīng)具有更低的本底噪聲,系數(shù)為10,因?yàn)槲覀兊脑鲆鏋?0。這將確保來自放大器的噪聲遠(yuǎn)低于傳感器的本底噪聲。計(jì)算噪聲裕量時(shí),我們可假設(shè)運(yùn)算放大器輸入端的噪聲大致等于運(yùn)算放大器的總噪聲加上ADC的噪聲。
評論