TI專家為你解答電源設(shè)計相關(guān)問題(三)
電子電路通常都工作在正穩(wěn)壓輸出電壓下,而這些電壓一般都是由降壓穩(wěn)壓器來提供的。如果同時還需要負輸出電壓,那么在降壓—升壓拓撲中就可以配置相同的降壓控制器。負輸出電壓降壓—升壓有時稱之為負反向,其工作占空比為 50%,可提供相當(dāng)于輸入電壓但極性相反的輸出電壓。其可以隨著輸入電壓的波動調(diào)節(jié)占空比,以“降壓”或“升壓”輸出電壓來維持穩(wěn)壓。
圖 1 顯示了一款精簡型降壓—升壓電路,以及電感上出現(xiàn)的開關(guān)電壓。這樣一來該電路與標準降壓轉(zhuǎn)換器的相似性就會頓時明朗起來。實際上,除了輸出電壓和接地相反以外,它和降壓轉(zhuǎn)換器完全一樣。這種布局也可用于同步降壓轉(zhuǎn)換器。這就是與降壓或同步降壓轉(zhuǎn)換器端相類似的地方,因為該電路的運行與降壓轉(zhuǎn)換器不同。
FET 開關(guān)時出現(xiàn)在電感上的電壓不同于降壓轉(zhuǎn)換器的電壓。正如在降壓轉(zhuǎn)換器中一樣,平衡伏特-微秒 (V-μs) 乘積以防止電感飽和是非常必要的。當(dāng) FET 為開啟時(如圖 1 所示的 ton 間隔),全部輸入電壓被施加至電感。這種電感“點”側(cè)上的正電壓會引起電流斜坡上升,這就帶來電感的開啟時間 V-μs 乘積。FET 關(guān)閉 (toff) 期間,電感的電壓極性必須倒轉(zhuǎn)以維持電流,從而拉動點側(cè)為負極。電感電流斜坡下降,并流經(jīng)負載和輸出電容,再經(jīng)二極管返回。電感關(guān)閉時V-μs 乘積必須等于開啟時 V-μs 乘積。由于 Vin 和 Vout 不變,因此很容易便可得出占空比 (D) 的表達式:D=Vout/(Vout “ Vin)。這種控制電路通過計算出正確的占空比來維持輸出電壓穩(wěn)壓。上述表達式和圖 1 所示波形均假設(shè)運行在連續(xù)導(dǎo)電模式下。
圖 1 降壓—升壓電感要求平衡其伏特-微秒乘積
降壓—升壓電感必須工作在比輸出負載電流更高的電流下。其被定義為 IL = I/(1-D),或只是輸入電流與輸出電流相加。對于和輸入電壓大小相等的負輸出電壓(D = 0.5)而言,平均電感電流為輸出的 2 倍。
有趣的是,連接輸入電容返回端的方法有兩種,其會影響輸出電容的 rms 電流。典型的電容布局是在 +Vin 和 Gnd 之間,與之相反,輸入電容可以連接在 +Vin和 ”V 之間。利用這種輸入電容配置可降低輸出電容的rms電流。然而,由于輸入電容連接至 “Vout,因此 ”Vout 上便形成了一個電容性分壓器。這就在控制器開始起作用以前,在開啟時間的輸出上形成一個正峰值。為了最小化這種影響,最佳的方法通常是使用一個比輸出電容要小得多的輸入電容,請參見圖 2 所示的電路。輸入電容的電流在提供 dc 輸出電流和吸收平均輸入電流之間相互交替。rms 電流電平在最高輸入電流的低輸入電壓時最差。因此,選擇電容器時要多加注意,不要讓其 ESR 過高。陶瓷或聚合物電容器通常是這種拓撲較為合適的選擇。
圖 2 降壓控制器在降壓—升壓中的雙重作用
必須要選擇一個能夠以最小輸入電壓減去二極管壓降上電的控制器,而且在運行期間還必須能夠承受得住 Vin 加 Vout 的電壓。FET 和二極管還必須具有適用于這一電壓范圍的額定值。通過連接輸出接地的反饋電阻器可實現(xiàn)對輸出電壓的調(diào)節(jié),這是由于控制器以負輸出電壓為參考電壓。只需精心選取少量組件的值,并稍稍改動電路,降壓控制器便可在負輸出降壓—升壓拓撲中起到雙重作用。
電源設(shè)計小貼士 6:精確測量電源紋波
精確地測量電源紋波本身就是一門藝術(shù)。在圖 1 所示的示例中,一名初級工程師完全錯誤地使用了一臺示波器。他的第一個錯誤是使用了一支帶長接地引線的示波器探針;他的第二個錯誤是將探針形成的環(huán)路和接地引線均置于電源變壓器和開關(guān)元件附近;他的最后一個錯誤是允許示波器探針和輸出電容之間存在多余電感。該問題在紋波波形中表現(xiàn)為高頻拾取。在電源中,存在大量可以很輕松地與探針耦合的高速、大信號電壓和電流波形,其中包括耦合自電源變壓器的磁場,耦合自開關(guān)節(jié)點的電場,以及由變壓器互繞電容產(chǎn)生的共模電流。
圖 1 錯誤的紋波測量得到的較差的測量結(jié)果
利用正確的測量方法可以大大地改善測得紋波結(jié)果。首先,通常使用帶寬限制來規(guī)定紋波,以防止拾取并非真正存在的高頻噪聲。我們應(yīng)該為用于測量的示波器設(shè)定正確的帶寬限制。其次,通過取掉探針“帽”,并構(gòu)成一個拾波器(如圖 2 所示),我們可以消除由長接地引線形成的天線。將一小段線纏繞在探針接地連接點周圍,并將該接地連接至電源。這樣做可以縮短暴露于電源附近高電磁輻射的端頭長度,從而進一步減少拾波。
最后,在隔離電源中,會產(chǎn)生大量流經(jīng)探針接地連接點的共模電流。這就在電源接地連接點和示波器接地連接點之間形成了壓降,從而表現(xiàn)為紋波。要防止這一問題的出現(xiàn),我們就需要特別注意電源設(shè)計的共模濾波。另外,將示波器引線纏繞在鐵氧體磁心周圍也有助于最小化這種電流。這樣就形成了一個共模電感器,其在不影響差分電壓測量的同時,還減少了共模電流引起的測量誤差。圖 2 顯示了該完全相同電路的紋波電壓,其使用了改進的測量方法。這樣,高頻峰值就被真正地消除了。
圖 2 四個輕微的改動便極大地改善了測量結(jié)果
實際上,集成到系統(tǒng)中以后,電源紋波性能甚至?xí)谩T陔娫春拖到y(tǒng)其他組件之間幾乎總是會存在一些電感。這種電感可能存在于布線中,抑或只有蝕刻存在于 PWB 上。另外,在芯片周圍總是會存在額外的旁路電容,它們就是電源的負載。這二者共同構(gòu)成一個低通濾波器,進一步降低了電源紋波和/或高頻噪聲。在極端情況下,電流短時流經(jīng) 15 nH 電感和 10 μF 旁路電容的一英寸導(dǎo)體時,該濾波器的截止頻率為 400 kHz。這種情況下,就意味著高頻噪聲將會得到極大降低。許多情況下,該濾波器的截止頻率會在電源紋波頻率以下,從而有可能大大降低紋波。經(jīng)驗豐富的工程師應(yīng)該能夠找到在其測試過程中如何運用這種方法的途徑。
評論