新聞中心

EEPW首頁 > 模擬技術(shù) > 設(shè)計應(yīng)用 > 一種H型雙極模式PWM控制的功率轉(zhuǎn)換電路設(shè)計

一種H型雙極模式PWM控制的功率轉(zhuǎn)換電路設(shè)計

作者: 時間:2010-10-08 來源:網(wǎng)絡(luò) 收藏

  低速特性是衡量轉(zhuǎn)臺伺服系統(tǒng)性能的重要指標(biāo)之一。影響低速特性的因素有很多,其中最主要的是摩擦力矩和電機波動力矩的干擾。對摩擦力矩的干擾,可以采取摩擦力矩補償方法,來降低摩擦力矩干擾對伺服系統(tǒng)低速特性的影響。但在工程中很難確定摩擦力矩的準(zhǔn)確模型,因此這些補償方法在工程中應(yīng)用比較困難。

  提高轉(zhuǎn)臺伺服系統(tǒng)低速特性的作用十分顯著,而且簡單易行。能夠提高伺服系統(tǒng)的低速特性,是因為的電動機電樞回路中始終流過一個交變的電流,這個電流可以使電動機發(fā)生高頻顫動,有利于減小靜摩擦,從而改善伺服系統(tǒng)的低速特性。但因其功率損耗大,H型雙極模式PWM控制只適用于中、小功率的伺服系統(tǒng)。因此,有必要設(shè)計一種能夠減小功率損耗的H型雙極模式PWM控制的功率轉(zhuǎn)換電路,使得H型雙極模式PWM控制應(yīng)用在大功率伺服系統(tǒng)中。

  H型雙極模式PWM控制的功率損耗

  如圖1所示,H型雙極模式PWM控制一般由4個大功率可控開關(guān)管(V 1-4)和4個續(xù)流二極管(VD 1-4)組成H橋式電路。4個大功率可控開關(guān)管分為2組,V1和V4為一組,V2和V3為一組。同一組的兩個大功率可控開關(guān)管同時導(dǎo)通,同時關(guān)閉,兩組交替輪流導(dǎo)通和關(guān)閉,即驅(qū)動信號u1=u4,u2=u3=-u1,電樞電流的方向在一個調(diào)寬波周期中依次按圖1中方向1、2、3、4變化。由于允許電流反向,所以H型雙極模式PWM控制工作時電樞電流始終是連續(xù)的。電樞電流始終連續(xù)產(chǎn)生電動機的附加功耗、大功率可控開關(guān)管高頻開通關(guān)閉產(chǎn)生的導(dǎo)通功耗和開關(guān)功耗等動態(tài)功耗,是H型雙極模式PWM控制功率損耗的主要來源。決定電動機附加功耗大小的因素主要是PWM的,越大附加功耗就越小。決定大功率可控開關(guān)管的動態(tài)功耗大小的因素主要是大功率可控開關(guān)管的開通關(guān)閉時間和PWM的,開通關(guān)閉時間越長動態(tài)功耗就越大,PWM開關(guān)頻率越大動態(tài)功耗就越大。

一種H型雙極模式PWM控制的功率轉(zhuǎn)換電路設(shè)計

圖1H型雙極模式PWM控制原理圖

  電樞回路的附加功耗、大功率可控開關(guān)管的動態(tài)損耗,使得H型雙極模式PWM控制的功率損耗很大、不適合應(yīng)用在大功率伺服系統(tǒng)中。為了解決這個問題,本文將以減小電動機電樞回路的附加功耗和大功率開關(guān)管的動態(tài)功耗為原則,設(shè)計H型雙極模式PWM控制的功率轉(zhuǎn)換電路,以使H型雙極模式PWM控制應(yīng)用在大功率伺服系統(tǒng)中。

  H型雙極模式PWM控制的功率轉(zhuǎn)換電路設(shè)計

  設(shè)計H型雙極模式PWM控制的功率轉(zhuǎn)換電路的核心是:功率轉(zhuǎn)換器件的選取及其驅(qū)動電路設(shè)計、保護電路的設(shè)計。

  功率轉(zhuǎn)換器件

  常用的大功率可控開關(guān)管主要有大功率雙極型晶體管(GTR)、大功率電力場效應(yīng)管(MOSFET)和等。GTR的主要缺點是:開通關(guān)閉時間長、開關(guān)功耗大、工作頻率低、熱穩(wěn)定性差、容易損壞。MOSFET的主要缺點是:管子導(dǎo)通時通態(tài)壓降比較大、管子功率損耗大。絕緣柵雙極晶體管(Isolated Gate Bipolar Transistor)集GTR和MOSFET的優(yōu)點于一身,既具有通態(tài)電壓低、耐高壓、承受電流大、功率損耗低的特點,又具有輸出阻抗高、速度快、熱穩(wěn)定性好的特點。因此,具有廣闊的工程應(yīng)用前景。

  本文的功率轉(zhuǎn)換電路采用2MB1300D-140型號的IGBT作為功率轉(zhuǎn)換器件,其示意圖如圖2中右側(cè)所示,G是柵(門)極、C極是集電極、E極是發(fā)射極。IGBT驅(qū)動條件與IGBT特性的關(guān)系經(jīng)實驗測得如表1所示,其中Vces、ton、toff、Vce、R分別為集電極-發(fā)射極飽和壓降、開通時間、關(guān)閉時間、集電極-發(fā)射極電壓和柵極電阻,↑、-、↓分別表示增大、不變、減小。從表1可以看出:

 ?、僭龃笳驏艍?Vge,Vces和ton隨之減小,IGBT的動態(tài)功耗隨之減?。?/P>

 ?、谠龃蠓聪驏艍?Vge,toff隨之減小,IGBT的動態(tài)功耗隨之減??;

 ?、墼龃驲,IGBT的ton、toff隨之增大,IGBT的動態(tài)功耗隨之增大。

表1IGBT驅(qū)動條件與IGBT特性的關(guān)系

IGBT驅(qū)動條件與IGBT特性的關(guān)系

  因此,減小IGBT的動態(tài)功耗,需要增大正向柵壓+Vge、增大反向柵壓-Vge、減小ton和toff。但Vge并非越高越好,原因是Vge過高時電流增大,容易損壞IGBT。一般+Vge不超過+20V。IGBT關(guān)斷期間,由于電路中其它部分的干擾,會在柵極G上產(chǎn)生一些高頻振蕩信號,這些信號輕則會使本該關(guān)閉的IGBT處于微通狀態(tài)、增加IGBT的功耗,重則會使逆變電路處于短路直通狀態(tài),為了防止這些現(xiàn)象發(fā)生反向柵壓-Vge越大越好。根據(jù)上述關(guān)系可以總結(jié),IGBT對驅(qū)動電路的要求主要有:動態(tài)驅(qū)動能力強、正向和反向柵壓合適、輸入輸出電隔離能力強、輸入輸出信號傳輸無延時、具有一定保護功能。

  為了減小IGBT的動態(tài)功耗和保障電路安全,滿足IGBT的驅(qū)動要求,需合理確定+Vge、-Vge和R的值。這些都需要通過設(shè)計驅(qū)動電路來實現(xiàn)。

pwm相關(guān)文章:pwm原理




評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉