新聞中心

EEPW首頁(yè) > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 采用SAR結(jié)構(gòu)的8通道12位ADC設(shè)計(jì)

采用SAR結(jié)構(gòu)的8通道12位ADC設(shè)計(jì)

——
作者: 時(shí)間:2007-01-26 來(lái)源:《電子設(shè)計(jì)應(yīng)用》 收藏

引言

adc是模擬系統(tǒng)與數(shù)字系統(tǒng)接口的關(guān)鍵部件,長(zhǎng)期以來(lái)一直被廣泛應(yīng)用于通信、軍事及消費(fèi)電子等領(lǐng)域,隨著計(jì)算機(jī)和通信產(chǎn)業(yè)的迅猛發(fā)展,adc在便攜式設(shè)備上的應(yīng)用發(fā)展迅速,正逐步向高速、高精度和低功耗的方向發(fā)展。

目前市場(chǎng)上占統(tǒng)治地位的adc的類型主要包括:逐次逼近型(sar)、σ-δ型、流水線型。σ-δ型可以實(shí)現(xiàn)很高的分辨率,流水線型可以保證很高的采樣速率,這兩種體系結(jié)構(gòu)都是為了滿足某種特定需求的縱向市場(chǎng)而設(shè)計(jì)的。sar adc是采樣速率低于5msps的中高分辨率應(yīng)用的常見結(jié)構(gòu),由于其實(shí)質(zhì)上采用的是二進(jìn)制搜索算法,內(nèi)部電路可以運(yùn)行在幾mhz,采樣速率主要由逐次逼近算法確定。

本文基于上華0.6μm bicmos工藝設(shè)計(jì)了一個(gè)8通道12位串行輸出adc,轉(zhuǎn)換核心電路采用逐次逼近型結(jié)構(gòu),并在總結(jié)改進(jìn)傳統(tǒng)結(jié)構(gòu)的基礎(chǔ)上,采用了電壓定標(biāo)和電荷定標(biāo)的復(fù)合式dac結(jié)構(gòu),這種"5+4+3"的分段式復(fù)合結(jié)構(gòu)不但避免了大電容引入的匹配性問(wèn)題,而且由于引入了電阻,減小了電路本身的線性誤差,比較器的實(shí)現(xiàn)采用多極級(jí)聯(lián)的放大器結(jié)構(gòu),降低了設(shè)計(jì)復(fù)雜度,最后基于csmc 0.6μm bicmos工藝實(shí)現(xiàn)了整體版圖設(shè)計(jì)。

本文引用地址:http://m.butianyuan.cn/article/21570.htm


系統(tǒng)結(jié)構(gòu)

sar adc電路結(jié)構(gòu)主要包含五個(gè)部分,采樣保持電路,比較器、dac,逐次逼近寄存器和邏輯控制單元,轉(zhuǎn)換中的逐次逼近是按對(duì)分原理,由控制邏輯電路完成的,其工作過(guò)程如下:?jiǎn)?dòng)后,控制邏輯電路首先把逐次逼近寄存器的最高位置1,其他位置0,將其存儲(chǔ)到逐次逼近寄存器,然后經(jīng)數(shù)模轉(zhuǎn)換后得到一個(gè)電壓值(大小約為滿量程輸出的一半)。這個(gè)電壓值在比較器中與輸入信號(hào)進(jìn)行比較,比較器的輸出反饋到dac,并在下一次比較前對(duì)其進(jìn)行修正。即輸入信號(hào)的抽樣值與dac的初始輸出值相減,余差被比較器量化,量化值再來(lái)指導(dǎo)控制邏輯是增加還是減少dac的輸出,然后,再次從輸入抽樣值中減去這個(gè)新的dac輸出值。不斷重復(fù)這個(gè)過(guò)程,直至完成最后一位數(shù)字的實(shí)現(xiàn),由此可見,這種數(shù)據(jù)的轉(zhuǎn)變始終處于邏輯控制電路的時(shí)鐘驅(qū)動(dòng)之下,逐次逼近寄存器不斷進(jìn)行比較和移位操作,直到完成最低有效位(lsb)的轉(zhuǎn)換,這時(shí)逐次逼近寄存器的各位值均已確定,轉(zhuǎn)換操作完成。

由于本設(shè)計(jì)針對(duì)的是串行多路通道轉(zhuǎn)換技術(shù),所以本文在sar adc基本結(jié)構(gòu)的基礎(chǔ)上,在模擬輸入的前端加入多路復(fù)用模塊,并在輸出后端加入并串轉(zhuǎn)換電路。

為實(shí)現(xiàn)信號(hào)的快速精確轉(zhuǎn)換,sar adc中重要部件是采樣保持電路,比較器和dac,等效輸入電路如圖1所示,在獲取數(shù)據(jù)期間,被選信道作為輸入給電容chold充電,獲得時(shí)間結(jié)束后,t/h開關(guān)打開,電荷維持在chold上作為信號(hào)樣本,與dac中產(chǎn)生的模擬信號(hào)進(jìn)行比較,將比較結(jié)果輸入并/串輸出寄存器,在三態(tài)總線控制下輸出數(shù)字位。

電路設(shè)計(jì)與實(shí)現(xiàn)

采樣/保持電路的性能高低限定了整個(gè)adc的速度和精度,在設(shè)計(jì)中采用雙差分底板采樣技術(shù),雙差分結(jié)構(gòu)以獲得優(yōu)良的ac性能,另外底板采樣技術(shù)的應(yīng)用也極大的減少了電荷注入、時(shí)鐘饋通以及有限帶寬所造成的誤差。優(yōu)化了整體性能。其中比較器的實(shí)現(xiàn)采用3個(gè)放大級(jí)聯(lián)結(jié)構(gòu),這樣不僅極大的提高了增益,而且減小了比較器的設(shè)計(jì)難度,提高了電路性能,下面重點(diǎn)講述dac的設(shè)計(jì)與實(shí)現(xiàn)。

sar adc的速度和分辨率主要受反饋電路中dac的速度、分辨率和線性的限制,精確設(shè)計(jì)dac是本次設(shè)計(jì)的重點(diǎn)和關(guān)鍵,傳統(tǒng)的sar adc多采用簡(jiǎn)單的電阻分壓式或電容電荷型結(jié)構(gòu)來(lái)實(shí)現(xiàn),電阻分壓式轉(zhuǎn)換器的優(yōu)點(diǎn)是只需要用到一種電阻,容易保證制造精度,即使電阻出現(xiàn)較大的誤差,也不會(huì)出現(xiàn)非單調(diào)性。但n位二進(jìn)制輸入的電阻分壓式數(shù)模轉(zhuǎn)換器需要2n個(gè)分壓電阻以及同樣數(shù)量的模擬開關(guān),所以隨著位數(shù)的增加,其所需元器件的數(shù)量會(huì)呈幾何級(jí)數(shù)增加,這是它的缺點(diǎn),單獨(dú)用這種結(jié)構(gòu)來(lái)做一個(gè)dac的情況比較少見,但是它卻在8位以下的sar adc中常用到,電容電荷型dac的優(yōu)點(diǎn)是精度較高,但缺點(diǎn)是面積大,對(duì)寄生電容敏感,而且還需要相連時(shí)鐘,增加了設(shè)計(jì)制造的復(fù)雜度。

本文設(shè)計(jì)的dac采用復(fù)合結(jié)構(gòu),由于本芯片是一個(gè)12位精度的adc,要求dac也要達(dá)到12位精度,而且對(duì)于位數(shù)較高的轉(zhuǎn)換器,從芯片面積和性能方面綜合考慮,組合結(jié)構(gòu)較單一結(jié)構(gòu)優(yōu)勢(shì)顯著,因而本文采用5+3+4復(fù)合結(jié)構(gòu)實(shí)現(xiàn),即高5位msb采用電容網(wǎng)絡(luò)實(shí)現(xiàn),中間3位采用電子網(wǎng)絡(luò),而低4位lsb仍用電容網(wǎng)絡(luò)實(shí)現(xiàn),這樣設(shè)計(jì)避免了不同結(jié)構(gòu)實(shí)現(xiàn)上的不足,結(jié)合了各自的優(yōu)點(diǎn),較好的實(shí)現(xiàn)電路設(shè)計(jì)目標(biāo)。此dac的優(yōu)點(diǎn)是具有一定的單調(diào)性。因?yàn)殡娮璐举|(zhì)上是單調(diào)的,而且3個(gè)數(shù)字位只有一種阻值的電阻,不存在電阻失配問(wèn)題,電阻串不需要預(yù)充電,轉(zhuǎn)換速度比電容陣列的轉(zhuǎn)換速度快,但芯片占用面積較大,電容網(wǎng)絡(luò)最多只需滿足5位數(shù)字位對(duì)應(yīng)的電容精度要求便可實(shí)現(xiàn)12位轉(zhuǎn)換匹配,所以在分配每段位數(shù)時(shí),本文在芯片面積和轉(zhuǎn)換速度之間進(jìn)行了折中考慮,單獨(dú)對(duì)dac進(jìn)行仿真得到其建立時(shí)間僅為12ns。

設(shè)計(jì)仿真

根據(jù)電路功能及指標(biāo)要求,在cadence環(huán)境下用hspice對(duì)電路進(jìn)行仿真,通過(guò)控制邏輯精確控制,最后實(shí)現(xiàn)12位數(shù)字的轉(zhuǎn)換結(jié)果,圖2為選擇第8通道對(duì)2.5v電壓進(jìn)行轉(zhuǎn)換的輸出波形,實(shí)現(xiàn)了模擬信號(hào)到數(shù)字信號(hào)的正確轉(zhuǎn)換,12位adc的工作溫度范圍為-55℃-125℃,訪問(wèn)條件為vdd=5.0v,vss=0v,vref=4.096v,vagnd=0v,最后基于csmc 0.6μm bicmos工藝完成了版圖設(shè)計(jì),面積為2.5×2.2mm2。


結(jié)語(yǔ)

本文基于csmc 0.6μm bicmos工藝設(shè)計(jì)實(shí)現(xiàn)了一個(gè)12位串行輸出adc,采用電壓定標(biāo)和電荷定標(biāo)組合式數(shù)模轉(zhuǎn)換器技術(shù),比較器的實(shí)現(xiàn)采用多極級(jí)聯(lián)放大器形式,通過(guò)合理的時(shí)序控制,實(shí)現(xiàn)了較好的性能,轉(zhuǎn)換速率為7.5μs,正常工作電流2.8ma,增益誤差小于2lsb,線性誤差小于1個(gè)lsb,最后版圖面積為2.5×2.2mm2,此轉(zhuǎn)換器對(duì)于消費(fèi)電子、汽車電子及便攜式產(chǎn)品等方面應(yīng)用是具有較好性價(jià)比的選擇。



關(guān)鍵詞:

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉