采用PIC單片機(jī)的汽車電動(dòng)助力轉(zhuǎn)向系統(tǒng)
3.5.1 電機(jī)驅(qū)動(dòng)電路
電動(dòng)機(jī)的驅(qū)動(dòng)電路主要包括FET橋式電路、FET基極驅(qū)動(dòng)電路、電機(jī)驅(qū)動(dòng)線路上的電流傳感器和繼電器構(gòu)成。
FET橋式電路主要由四個(gè)大功率MOSFET功率管組成,要求功率管具有良好的開關(guān)特性、能承受較大的驅(qū)動(dòng)電流、且具有較長(zhǎng)的使用壽命,根據(jù)電機(jī)的功率參數(shù)及功率管的極限參數(shù)和電特性,我們采用四個(gè)相同的N溝道IRFP250功率管來構(gòu)成H橋電路。
FET基極驅(qū)動(dòng)電路選用MOSFET專用柵極集成電路IR2109作為核心模塊,該芯片是一種單通道、柵極驅(qū)動(dòng)、高壓高速功率器件,采用高度集成的電平轉(zhuǎn)換技術(shù),大大簡(jiǎn)化了邏輯電路對(duì)功率器件的控制要求,上管采用外部自舉電容上電,使驅(qū)動(dòng)電源數(shù)目大大減少,控制了電路板的體積,降低了成本,提高了系統(tǒng)可靠性[4]。
驅(qū)動(dòng)電路如圖3-2所示,兩個(gè)IR2109的IN端為驅(qū)動(dòng)H橋同臂上下兩個(gè)功率管的信號(hào)脈沖輸入端,分別通過具有高速性能的6N137光電耦合器接至PIC16F877單片機(jī)的兩個(gè)PWM脈沖輸出端口;兩個(gè)SD端分別與單片機(jī)的一個(gè)I/O口相連,控制電機(jī)停車操作;每個(gè)芯片的HO和LO端分別與同橋臂的功率管相連,控制電機(jī)轉(zhuǎn)速;VB端通過自舉二極管UF1005與+12V電源相連,為了阻斷特殊電路中所承受的全部電壓,此處選用具有超快恢復(fù)特性的二極管UF1005。
圖3-2 電機(jī)驅(qū)動(dòng)電路
3.5.2 電機(jī)電流采樣電路
系統(tǒng)進(jìn)行電流采樣有兩方面用途,一是為電動(dòng)機(jī)提供保護(hù);二是通過電流傳感器反饋電樞電流的信號(hào),以便對(duì)電樞電流進(jìn)行閉環(huán)控制。標(biāo)準(zhǔn)電阻是一種常用的電流傳感器,由于其簡(jiǎn)單可靠、阻值穩(wěn)定、精度高、頻響好、輸出電壓直接比例于所流過的電流,在 PWM 系統(tǒng)中應(yīng)用相當(dāng)廣泛。標(biāo)準(zhǔn)電阻一般采用錳銅或硅錳銅制成。在采樣電路中,選用AD626把采樣信號(hào)放大10的n倍送至單片機(jī)相應(yīng)端口,具體電路如圖3-3。
圖3-3 電機(jī)電流采樣電路
3.6 繼電器控制電路
如下圖3-4所示,CPU控制信號(hào)經(jīng)CPU端口PSP0輸出后,開關(guān)管 Q1導(dǎo)通并驅(qū)動(dòng)功率三極管 Q12,使繼電器通電并閉合節(jié)點(diǎn),繼電器節(jié)點(diǎn)閉合后可給電機(jī)、離合器供電。CPU輸出的高低電平信號(hào)分別控制繼電器的合開操作。
圖3-4 繼電器控制電路設(shè)計(jì)
4 結(jié)論
本文在對(duì)EPS系統(tǒng)的原理和助力控制過程的分析基礎(chǔ)上,對(duì) EPS 控制系統(tǒng)的硬件電路進(jìn)行了研究設(shè)計(jì),提出了采用受限單極性可逆PWM控制模式控制直流電機(jī);探索了在汽車電動(dòng)助力轉(zhuǎn)向系統(tǒng)中,低壓、低速、大電流永磁式無刷直流電機(jī)的控制方法。采用精密電阻進(jìn)行電機(jī)電流采樣的方法,實(shí)現(xiàn)了對(duì)直流電機(jī)輸出扭矩的閉環(huán)控制。在完成了硬件電路設(shè)計(jì)和軟件編程后,按照預(yù)定的助力特性曲線,對(duì)EPS系統(tǒng)進(jìn)行了臺(tái)架試驗(yàn),試驗(yàn)結(jié)果表明:電子控制單元信號(hào)采集的實(shí)時(shí)性較高,對(duì)電機(jī)閉環(huán)控制的跟隨性較好,整個(gè)系統(tǒng)具有良好的電動(dòng)助力特性,硬件部分的抗干擾能力和可靠性都很高。
評(píng)論