大功率LED的封裝技術(shù)
一、前言
大功率LED封裝由于結(jié)構(gòu)和工藝復(fù)雜,并直接影響到LED的使用性能和壽命,一直是近年來的研究熱點,特別是大功率白光LED封裝更是研究熱點中的熱點。LED封裝的功能主要包括:1.機(jī)械保護(hù),以提高可靠性;2.加強散熱,以降低芯片結(jié)溫,提高LED性能;3.光學(xué)控制,提高出光效率,優(yōu)化光束分布;4.供電管理,包括交流/直流轉(zhuǎn)變,以及電源控制等。
LED封裝方法、材料、結(jié)構(gòu)和工藝的選擇主要由芯片結(jié)構(gòu)、光電/機(jī)械特性、具體應(yīng)用和成本等因素決定。經(jīng)過40多年的發(fā)展,LED封裝先后經(jīng)歷了支架式(Lamp LED)、貼片式(SMD LED)、功率型LED(Power LED)等發(fā)展階段。隨著芯片功率的增大,特別是固態(tài)照明技術(shù)發(fā)展的需求,對LED封裝的光學(xué)、熱學(xué)、電學(xué)和機(jī)械結(jié)構(gòu)等提出了新的、更高的要求。為了有效地降低封裝熱阻,提高出光效率,必須采用全新的技術(shù)思路來進(jìn)行封裝設(shè)計。
二、大功率LED封裝關(guān)鍵技術(shù)
大功率LED封裝主要涉及光、熱、電、結(jié)構(gòu)與工藝等方面,如圖1所示。這些因素彼此既相互獨立,又相互影響。其中,光是LED封裝的目的,熱是關(guān)鍵,電、結(jié)構(gòu)與工藝是手段,而性能是封裝水平的具體體現(xiàn)。從工藝兼容性及降低生產(chǎn)成本而言,LED封裝設(shè)計應(yīng)與芯片設(shè)計同時進(jìn)行,即芯片設(shè)計時就應(yīng)該考慮到封裝結(jié)構(gòu)和工藝。否則,等芯片制造完成后,可能由于封裝的需要對芯片結(jié)構(gòu)進(jìn)行調(diào)整,從而延長了產(chǎn)品研發(fā)周期和工藝成本,有時甚至不可能。
圖1 大功率白光LED封裝技術(shù)
具體而言,大功率LED封裝的關(guān)鍵技術(shù)包括:
?。ㄒ唬┑蜔嶙璺庋b工藝
對于現(xiàn)有的LED光效水平而言,由于輸入電能的80%左右轉(zhuǎn)變成為熱量,且LED芯片面積小,因此,芯片散熱是LED封裝必須解決的關(guān)鍵問題。主要包括芯片布置、封裝材料選擇(基板材料、熱界面材料)與工藝、熱沉設(shè)計等。
LED封裝熱阻主要包括材料(散熱基板和熱沉結(jié)構(gòu))內(nèi)部熱阻和界面熱阻。散熱基板的作用就是吸收芯片產(chǎn)生的熱量,并傳導(dǎo)到熱沉上,實現(xiàn)與外界的熱交換。常用的散熱基板材料包括硅、金屬(如鋁,銅)、陶瓷(如Al2O3,AlN,SiC)和復(fù)合材料等。如Nichia公司的第三代LED采用CuW做襯底,將1mm芯片倒裝在CuW襯底上,降低了封裝熱阻,提高了發(fā)光功率和效率;Lamina Ceramics公司則研制了低溫共燒陶瓷金屬基板,如圖2(a),并開發(fā)了相應(yīng)的LED封裝技術(shù)。該技術(shù)首先制備出適于共晶焊的大功率LED芯片和相應(yīng)的陶瓷基板,然后將LED芯片與基板直接焊接在一起。由于該基板上集成了共晶焊層、靜電保護(hù)電路、驅(qū)動電路及控制補償電路,不僅結(jié)構(gòu)簡單,而且由于材料熱導(dǎo)率高,熱界面少,大大提高了散熱性能,為大功率LED陣列封裝提出了解決方案。德國Curmilk公司研制的高導(dǎo)熱性覆銅陶瓷板,由陶瓷基板(AlN或Al2O3)和導(dǎo)電層(Cu)在高溫高壓下燒結(jié)而成,沒有使用黏結(jié)劑,因此導(dǎo)熱性能好、強度高、絕緣性強,如圖2(b)所示。其中氮化鋁(AlN)的熱導(dǎo)率為160W/mk,熱膨脹系數(shù)為4.0×10-6/℃(與硅的熱膨脹系數(shù)3.2×10-6/℃相當(dāng)),從而降低了封裝熱應(yīng)力。
圖2(a)低溫共燒陶瓷金屬基板
圖2(b)覆銅陶瓷基板截面示意圖
研究表明,封裝界面對熱阻影響也很大,如果不能正確處理界面,就難以獲得良好的散熱效果。例如,室溫下接觸良好的界面在高溫下可能存在界面間隙,基板的翹曲也可能會影響鍵合和局部的散熱。改善LED封裝的關(guān)鍵在于減少界面和界面接觸熱阻,增強散熱。因此,芯片和散熱基板間的熱界面材料(TIM)選擇十分重要。LED封裝常用的TIM為導(dǎo)電膠和導(dǎo)熱膠,由于熱導(dǎo)率較低,一般為0.5-2.5W/mK,致使界面熱阻很高。而采用低溫或共晶焊料、焊膏或者內(nèi)摻納米顆粒的導(dǎo)電膠作為熱界面材料,可大大降低界面熱阻。
?。ǘ└呷」饴史庋b結(jié)構(gòu)與工藝
在LED使用過程中,輻射復(fù)合產(chǎn)生的光子在向外發(fā)射時產(chǎn)生的損失,主要包括三個方面:芯片內(nèi)部結(jié)構(gòu)缺陷以及材料的吸收;光子在出射界面由于折射率差引起的反射損失;以及由于入射角大于全反射臨界角而引起的全反射損失。因此,很多光線無法從芯片中出射到外部。通過在芯片表面涂覆一層折射率相對較高的透明膠層(灌封膠),由于該膠層處于芯片和空氣之間,從而有效減少了光子在界面的損失,提高了取光效率。此外,灌封膠的作用還包括對芯片進(jìn)行機(jī)械保護(hù),應(yīng)力釋放,并作為一種光導(dǎo)結(jié)構(gòu)。因此,要求其透光率高,折射率高,熱穩(wěn)定性好,流動性好,易于噴涂。為提高LED封裝的可靠性,還要求灌封膠具有低吸濕性、低應(yīng)力、耐老化等特性。目前常用的灌封膠包括環(huán)氧樹脂和硅膠。硅膠由于具有透光率高,折射率大,熱穩(wěn)定性好,應(yīng)力小,吸濕性低等特點,明顯優(yōu)于環(huán)氧樹脂,在大功率LED封裝中得到廣泛應(yīng)用,但成本較高。研究表明,提高硅膠折射率可有效減少折射率物理屏障帶來的光子損失,提高外量子效率,但硅膠性能受環(huán)境溫度影響較大。隨著溫度升高,硅膠內(nèi)部的熱應(yīng)力加大,導(dǎo)致硅膠的折射率降低,從而影響LED光效和光強分布。
熒光粉的作用在于光色復(fù)合,形成白光。其特性主要包括粒度、形狀、發(fā)光效率、轉(zhuǎn)換效率、穩(wěn)定性(熱和化學(xué))等,其中,發(fā)光效率和轉(zhuǎn)換效率是關(guān)鍵。研究表明,隨著溫度上升,熒光粉量子效率降低,出光減少,輻射波長也會發(fā)生變化,從而引起白光LED色溫、色度的變化,較高的溫度還會加速熒光粉的老化。原因在于熒光粉涂層是由環(huán)氧或硅膠與熒光粉調(diào)配而成,散熱性能較差,當(dāng)受到紫光或紫外光的輻射時,易發(fā)生溫度猝滅和老化,使發(fā)光效率降低。此外,高溫下灌封膠和熒光粉的熱穩(wěn)定性也存在問題。由于常用熒光粉尺寸在1um以上,折射率大于或等于1.85,而硅膠折射率一般在1.5左右。由于兩者間折射率的不匹配,以及熒光粉顆粒尺寸遠(yuǎn)大于光散射極限(30nm),因而在熒光粉顆粒表面存在光散射,降低了出光效率。通過在硅膠中摻入納米熒光粉,可使折射率提高到1.8以上,降低光散射,提高LED出光效率(10%-20%),并能有效改善光色質(zhì)量。
傳統(tǒng)的熒光粉涂敷方式是將熒光粉與灌封膠混合,然后點涂在芯片上。由于無法對熒光粉的涂敷厚度和形狀進(jìn)行精確控制,導(dǎo)致出射光色彩不一致,出現(xiàn)偏藍(lán)光或者偏黃光。而Lumileds公司開發(fā)的保形涂層(Conformal coating)技術(shù)可實現(xiàn)熒光粉的均勻涂覆,保障了光色的均勻性,如圖3(b)。但研究表明,當(dāng)熒光粉直接涂覆在芯片表面時,由于光散射的存在,出光效率較低。有鑒于此,美國Rensselaer 研究所提出了一種光子散射萃取工藝(Scattered Photon Extraction method,SPE),通過在芯片表面布置一個聚焦透鏡,并將含熒光粉的玻璃片置于距芯片一定位置,不僅提高了器件可靠性,而且大大提高了光效(60%),如圖3(c)。
圖3 大功率白光LED封裝結(jié)構(gòu)
總體而言,為提高LED的出光效率和可靠性,封裝膠層有逐漸被高折射率透明玻璃或微晶玻璃等取代的趨勢,通過將熒光粉內(nèi)摻或外涂于玻璃表面,不僅提高了熒光粉的均勻度,而且提高了封裝效率。此外,減少LED出光方向的光學(xué)界面數(shù),也是提高出光效率的有效措施。
評論