新聞中心

EEPW首頁 > 電源與新能源 > 設計應用 > 實現(xiàn)太陽能組件電壓變化的供電網(wǎng)絡電路設計

實現(xiàn)太陽能組件電壓變化的供電網(wǎng)絡電路設計

作者: 時間:2014-01-27 來源:網(wǎng)絡 收藏

隨著無線技術(shù)的發(fā)展,無線網(wǎng)絡技術(shù)越來越多投入到實際應用中, 無線傳感器網(wǎng)絡一般分布范圍較廣,架設供電線路,投資大,維護成本高。 如采取干電池方式供電,則每個節(jié)點的電源供電能力有限,對每個節(jié)點更換電池不僅費時、費力,增加成本,而且影響工作效率。 能否穩(wěn)定持續(xù)的供電,成為制約油田無線示功儀及其無線網(wǎng)絡發(fā)展的一個重要因素,太陽能技術(shù)的發(fā)展使供電方式產(chǎn)生了飛躍式的發(fā)展,已經(jīng)成為油田無線示功儀及其中繼網(wǎng)絡節(jié)點供電方式的發(fā)展方向。 本文擬對油田監(jiān)測示功儀及中繼網(wǎng)絡節(jié)點設計一種智能化、免維護型的太陽能充電電路,為無線網(wǎng)絡節(jié)點供電。 該設計電路具有以下特點: ①基于開關(guān)電源技術(shù)設計的充電網(wǎng)絡具有自動調(diào)節(jié)占空比的功能, 具有很寬的輸入范圍。 ②采用線性電源管理芯片,用先預充2恒流2恒壓的充電方式完成整個充電過程。 ③采用低噪聲、高速度的CMOS 型調(diào)節(jié)器,具有高精度的恒壓、恒流輸出。 ④充電過壓保護、鋰電池過放電保護功能,使鋰電池充、放電安全可靠。 ⑤自動跟蹤太陽的功能,太陽能采集板始終保持對準太陽,充分利用太陽能。

本文引用地址:http://m.butianyuan.cn/article/226605.htm

1 系統(tǒng)設計

現(xiàn)有的光伏電池,單體的輸出都很低(在1V 以下) ,本設計中,將多個光伏電池相串聯(lián),組成。 通過可以自動調(diào)節(jié)占空比的保證在光照強度變化和負載變化時,輸出電壓基本穩(wěn)定,為充電管理芯片提供穩(wěn)定的電壓輸入。 通過對的副邊電壓監(jiān)測,保護充電管理芯片不因電壓過高而損壞。 通過對電池兩端的電壓監(jiān)測,保證鋰電池不會因過放電而損壞。 由于無線示功儀及其中繼網(wǎng)絡節(jié)點的供電要求是313V,采用低噪聲、高速度的CMOS型電壓調(diào)節(jié)器。 在自動跟蹤控制器作用下,始終保持全天候跟蹤太陽。 為了防止因連續(xù)陰雨天而導致的太陽能供電不足,設計應急充電電路,充電期間,無線示功儀及其節(jié)點正常運行。 具體系統(tǒng)設計模塊如圖1所示。

圖1 系統(tǒng)設計示意圖2 硬件

2.1 及充電

本文設計中采用16個光伏電池串聯(lián),組成電壓約為1218V 的,通過采集較高多的光能,保證日照能夠使鋰電池完全充滿電。 設計電路采用正激式拓撲結(jié)構(gòu)[ 1 ] 。 具體電路如圖2所示。

圖2 智能型太陽能充電主電路

太陽能組件產(chǎn)生的電能,一路經(jīng)過開關(guān)變壓器T1 的122繞組加至開關(guān)管Q1 的集電極( c) ,另一路經(jīng)過R1 為Q1 提供基極電壓。 當基極( b)的電壓為高電平時, Q1 開始導通,變壓器T1 的122繞組中產(chǎn)生1正2 負的電動勢,經(jīng)T1 耦合,在T1 的324繞組中產(chǎn)生3正4負的感應電動勢,此電動勢經(jīng)R5 , C2 疊加到Q1的基極( b) ,使Q1 迅速飽和導通。 由于變壓器T1 的122間的電流不能突變,在此過程中會產(chǎn)生1負2正的電動勢。 變壓器T1 的324繞組中感應出3負4正的電動勢,通過R5 , C2 ,使Q1 迅速進入截止狀態(tài)。 經(jīng)R1 對C2 的不斷充電, Q1 又開始導通,進入下一輪的開關(guān)振蕩狀態(tài)。 在導通期間, T1 變壓器的副邊繞組526,經(jīng)整流二極管D4 向外輸送能量。

穩(wěn)壓電路由穩(wěn)壓管D0、三極管Q2 等元件組成。 當負載減輕或太陽能組件輸出電壓升高時, A 點電壓上升。 當該電壓大于511V 時, D0 擊穿, Q2 因b2e結(jié)正向偏置而迅速導通,使Q1 提前截止,從而使輸出電壓趨于下降;反之,則控制過程相反,從而使變壓器T1 副邊輸出電壓基本穩(wěn)定。 當負載過重時, Q1 的c2e電流增大, R4 上的壓降也隨之增大。 當該電壓大于017V 時, Q2 導通, Q1 截止,達到過流保護的目的。 為避免截止期間變壓器T1 的122 繞組感應出的尖峰脈沖擊穿開關(guān)管Q1 ,并聯(lián)了尖峰脈沖吸收電路。2.2 過電壓保護控制

過電壓保護控制,具體電路如圖3所示:整流二極管D4 接過電壓保護繼電器JDQ1輸出。 充電控制管理芯片MCP73831最大輸入電壓為6V. 雖然供電網(wǎng)絡基本輸出電壓為5V,但當光照強度發(fā)生劇烈變化或負載變化較大時,輸出電壓仍然會有一定波動,為保護MCP73831不因短時的電壓波動而損壞,設計了過電壓保護控制器。 當W1 的電壓超過6V, JDQ 1會斷開輸出電路,MCP73831因斷電而得到保護。 具體分析如下:此部分電路設計主要采用了LM 2903電壓比較器和外圍電路擴展而成。 LM 2903包含兩路比較器,1, 2, 3腳為一路, 1腳為OU TPU TA, 2, 3腳為IN PU TA. 5, 6, 7腳為另一路, 7腳為OU TPU TB, 5, 6腳為IN PU TB. 其中過電壓保護控制器用5, 6, 7腳的比較器。電阻R11 , R13分壓后接至比較器的5腳。 當電壓大于6V 即分壓值大于214V. 比較器的7腳輸出電平由低轉(zhuǎn)為高。 Q3 飽和導通,則Q5 截止,安全工作指示燈熄滅,接點J1為高電平,此時JDQ 1開始工作,供電電路與后續(xù)電路斷開,同時過電壓紅色警示燈亮起。

圖3 過電壓與過放電保護控制電路

2.3 過放電保護控制


上一頁 1 2 下一頁

關(guān)鍵詞: 太陽能組件 電壓 供電網(wǎng)絡 電路設計

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉