電路基礎(chǔ)系列:交流電路篇-18 交流電路中的電源
交流電路中電阻消耗的電功率與電抗消耗的功率不同,因?yàn)殡娍共粫?huì)耗散能量
在直流電路中,消耗的功率只是直流電壓乘以直流電流的乘積,單位為瓦特。然而,對(duì)于含有無功元件的交流電路,我們必須用不同的方法計(jì)算消耗的功率。
電功率是電路中能量消耗的“速率”,因此,所有電氣和電子元件和裝置都對(duì)其能夠安全處理的電能有限制。例如,1/4瓦電阻器或20瓦放大器。
功率可以是時(shí)變的,既可以是直流量,也可以是交流量。電路中任何時(shí)刻的功率量稱為瞬時(shí)功率,由眾所周知的功率關(guān)系式給出,即伏特乘以安培(P=V*I)。所以一瓦特(即每秒一焦耳的能量消耗率)等于一伏特乘以一安培的伏特-安培積。
然后,電路元件吸收或提供的功率是通過元件的電壓V和流過元件的電流I的乘積。因此,如果我們有一個(gè)電阻為“R”歐姆的直流電路,電阻消耗的功率(單位:瓦特)可由以下任何一個(gè)通用公式給出:
電力式中:V為直流電壓,即直流電流,R是電阻值。
因此,電路中的功率只有在電壓和電流同時(shí)存在的情況下才存在,即沒有開路或閉路狀態(tài)??紤]以下標(biāo)準(zhǔn)電阻式直流電路的簡(jiǎn)單示例:
直流電阻電路在直流電路中,電壓和電流通常是恒定的,這是不隨時(shí)間變化的,因?yàn)闆]有與電源相關(guān)的正弦波形。然而,在交流電路中,電壓、電流和功率的瞬時(shí)值會(huì)不斷變化,受到電源的影響。因此,我們不能像計(jì)算直流電路那樣計(jì)算交流電路中的功率,但我們?nèi)匀豢梢哉f功率(p)等于電壓(v)乘以安培(i)。
另一個(gè)重要的一點(diǎn)是,交流電路中含有電抗,因此存在一個(gè)功率分量,這是由這些分量產(chǎn)生的磁場(chǎng)和/或電場(chǎng)的結(jié)果。其結(jié)果是,與純電阻元件不同的是,當(dāng)正弦波形經(jīng)過一個(gè)完整的周期性周期時(shí),該功率被存儲(chǔ)并返回電源。
因此,電路吸收的平均功率是一個(gè)完整周期內(nèi)存儲(chǔ)的功率和返回的功率之和。因此,電路平均功耗將是一個(gè)完整周期內(nèi)瞬時(shí)功率與瞬時(shí)功率的平均值,Pd定義為瞬時(shí)電壓v乘以瞬時(shí)電流i。注意,由于正弦函數(shù)是周期性和連續(xù)的,所有時(shí)間內(nèi)給出的平均功率將與單個(gè)周期內(nèi)給出的平均功率完全相同。
假設(shè)電壓和電流的波形都是正弦曲線,因此我們可以回憶一下:
正弦電壓波形由于瞬時(shí)功率是任何時(shí)刻的功率,那么:
應(yīng)用三角積求和恒等式:
將θ=θv–θi(電壓和電流波形之間的相位差)代入上式得出:
其中V和I分別是正弦波形的均方根(rms)值,θ是兩個(gè)波形之間的相位差。因此,我們可以將瞬時(shí)功率表示為:
瞬時(shí)交流功率方程這個(gè)方程表明瞬時(shí)交流功率有兩個(gè)不同的部分,因此是這兩個(gè)項(xiàng)的總和。第二項(xiàng)是時(shí)變正弦曲線,由于該項(xiàng)的2Ω部分,其頻率等于電源角頻率的兩倍。然而,第一項(xiàng)是一個(gè)常數(shù),其值僅取決于電壓(V)和電流(I)之間的相位差θ。
正弦曲線上的瞬時(shí)功率很難測(cè)量。因此,使用冪的平均值或平均值在數(shù)學(xué)上更方便、更容易。因此,在固定的循環(huán)次數(shù)下,正弦曲線瞬時(shí)功率的平均值可以簡(jiǎn)單地表示為:
式中,V和I是正弦均方根值,θ(θ)是電壓和電流之間的相位角。功率單位是瓦特(W)。
在電路中消耗的交流功率也可以通過使用電壓V的電路的阻抗(Z)得到有效值或者電流,我有效值如圖所示流過電路
50Hz正弦電源的電壓和電流值分別為:vt=240sin(ωt+60°V和it=5sin(ωt-10°)A。求出電路吸收的瞬時(shí)功率和平均功率的值。
由上可知,電路吸收的瞬時(shí)功率為:
應(yīng)用上述三角恒等式規(guī)則得出:
平均功率計(jì)算如下:
您可能已經(jīng)注意到,205.2瓦的平均功率值也是瞬時(shí)功率p(t)的第一項(xiàng)值,因?yàn)榈谝豁?xiàng)常量值是電源和負(fù)載之間能量變化的平均或平均速率。
純電阻電路中的交流電源到目前為止,我們已經(jīng)看到,在直流電路中,功率等于電壓和電流的乘積,這種關(guān)系對(duì)于純電阻交流電路也是如此。電阻器是消耗能量的電氣裝置,電阻器中的功率由p=VI=I^2R=V^2/R給出。這個(gè)功率總是正的。
考慮以下純電阻(即無限電容,C=∞和零電感,L=0)電路,電阻連接到交流電源,如圖所示。
純電阻電路當(dāng)一個(gè)純電阻連接到一個(gè)正弦電壓源時(shí),流過電阻的電流將與電源電壓成比例變化,即電壓和電流波形是“同相”的。由于電壓波形和電流波形之間的相位差為0,因此導(dǎo)致cos 0的相位角將等于1。
電阻消耗的電功率由下式得出:
純電阻中的電功率由于電壓和電流波形是同相的,也就是說,兩個(gè)波形同時(shí)達(dá)到峰值,同時(shí)也通過零,所以上面的功率方程降到只有:V*I。因此,可以通過將兩個(gè)波形相乘得到任何時(shí)刻的功率,得出伏安積。這就是所謂的“真正的力量”(P)以瓦特(W)、千瓦(kW)、兆瓦(MW)等為單位。
純電阻的交流功率波形該圖顯示了電壓、電流和相應(yīng)的功率波形。由于電壓和電流波形都是同相的,在正半周期內(nèi),當(dāng)電壓為正時(shí),電流也為正,所以功率為正,正數(shù)乘以正等于正。在負(fù)半周期內(nèi),電壓為負(fù),所以to是產(chǎn)生正功率的電流,負(fù)乘以負(fù)等于正。
然后,在純電阻電路中,電流流過電阻器的所有時(shí)間都會(huì)消耗電能,其表示為:P=V*I=I2R瓦特。注意,V和I都可以是它們的rms值,其中:V=I*R和I=V/R
純感應(yīng)電路中的交流電源在純電感(即無限電容C=∞和 零電阻R=0)電路中,電壓和電流波形不是同相的。每當(dāng)一個(gè)變化的電壓被施加到一個(gè)純感應(yīng)線圈,一個(gè)“反”電動(dòng)勢(shì)產(chǎn)生的線圈由于其自感。這種自感反對(duì)并限制了線圈中電流的任何變化。
這種反電動(dòng)勢(shì)的影響是,電流不能立即增加,通過線圈同相施加電壓,導(dǎo)致電流波形達(dá)到峰值或最大值后一段時(shí)間的電壓。結(jié)果是,在純感應(yīng)電路中,電流總是比電壓“滯后”(ELI)90°(π/2),如圖所示。
純感應(yīng)電路上面的波形顯示了通過純感應(yīng)線圈的瞬時(shí)電壓和瞬時(shí)電流隨時(shí)間的變化。最大電流,I最大值在一個(gè)周期的四分之一(90°)在電壓的最大(峰值)值之后。在這里,電流顯示為電壓周期開始時(shí)的負(fù)最大值,當(dāng)電壓波形在90時(shí)達(dá)到最大值時(shí),通過零增加到正最大值o .
因此,當(dāng)電壓和電流波形不再同時(shí)上升和下降,而是在線圈中引入90°(π/2)的相移時(shí),當(dāng)電壓領(lǐng)先電流90°時(shí),電壓和電流波形彼此“異相”。由于電壓波形和電流波形之間的相位差為90°,因此導(dǎo)致cos 90°=0的相位角。
因此,由純電感器儲(chǔ)存的電能,Q我計(jì)算公式:
純電感器的實(shí)際功率很明顯,一個(gè)純電感器不會(huì)消耗或消散任何實(shí)功率或真功率,但是當(dāng)我們有電壓和電流時(shí),在表達(dá)式中使用cos(θ):P=V*I*cos(θ)對(duì)于一個(gè)純電感器不再有效。在這種情況下,電流和電壓的乘積是虛功率,通常稱為“無功功率”,(Q)以無功伏安(VAr)、無功千伏安(KVAr)等為單位測(cè)量。
無功功率,無功功率不應(yīng)與瓦特混淆,瓦特用于實(shí)際功率。VAr表示電壓和電流的乘積,它們彼此相差90度。采用正弦函數(shù)對(duì)無功平均功率進(jìn)行數(shù)學(xué)辨識(shí)。然后,電感器中的平均無功功率公式變?yōu)椋?/p>純電感器中的無功功率
與實(shí)際功率(P)一樣,無功功率(Q)也取決于電壓和電流,但也取決于它們之間的相位角。因此,它是外加電壓和電流分量的乘積,電流分量與電壓相差90°,如圖所示。
純電感的交流功率波形在0°和90°之間的電壓波形的正半部分中,電感電流為負(fù),而電源電壓為正。因此,伏特和安培的乘積給出了一個(gè)負(fù)功率,即負(fù)功率乘以正功率等于負(fù)功率。在90度和180度之間,電流和電壓波形都是正值,產(chǎn)生正功率。此正功率表示線圈正在消耗電源的電能。
在180°和270°之間的電壓波形的負(fù)半部分中,存在表示負(fù)功率的負(fù)電壓和正電流。這個(gè)負(fù)功率表示線圈將存儲(chǔ)的電能返回電源。在270°和360°之間,電感器電流和電源電壓都為負(fù),從而產(chǎn)生一段正功率周期。
然后在電壓波形的一個(gè)完整周期內(nèi),我們有兩個(gè)相同的正負(fù)功率脈沖,其平均值為零,因此沒有實(shí)際的功率被耗盡,因?yàn)楣β式惶娴亓魅牒土鞒鲭娫础_@意味著在一個(gè)完整的周期內(nèi),一個(gè)純電感器的總功率為零,所以一個(gè)電感器的無功功率不執(zhí)行任何實(shí)際工作。
純電容電路中的交流電源C法拉的純電容(即零電感L=0,無限電阻R=∞)電路具有延遲電壓變化的特性。電容器在介質(zhì)中以電場(chǎng)的形式存儲(chǔ)電能,因此純電容器不會(huì)耗散任何能量,而是存儲(chǔ)能量。
在純電容電路中,電壓不能隨電流同相增加,因?yàn)樗枰冉o電容器板“充電”。這使得電壓波形在電流波形之后的一段時(shí)間內(nèi)達(dá)到其峰值或最大值。結(jié)果是,在純電容電路中,電流總是將電壓“超前”(ICE)90°(ω/2),如圖所示。
純電容電路波形顯示了通過純電容器的電壓和電流隨時(shí)間的變化。最大電流,Im發(fā)生在一個(gè)周期的四分之一(90o)在電壓的最大(峰值)值之前。在這里,電流在電壓周期開始時(shí)顯示為正最大值,并通過零,當(dāng)電壓波形在其最大值為90時(shí)減小到其負(fù)最大值o. 與純感應(yīng)電路相反的相移。
因此,對(duì)于純電容性電路,相位角θ=-90°,電容器中的平均無功功率公式為:
純電容器中的無功功率其中–V*I*sin(θ)是負(fù)正弦波。電容無功功率的符號(hào)也是QC使用相同的測(cè)量單位,即電感器的伏安無功(VAR)。然后我們可以看到,就像上面的純感應(yīng)電路一樣,純電容不會(huì)消耗或消耗任何真實(shí)或真實(shí)的功率P。
純電容器的交流功率波形在電壓波形的正半部之間的角度為0°和90°,電流和電壓波形均為正值,從而消耗正功率。90°之間180°電容器電流為負(fù),電源電壓仍為正。因此,伏安乘積給出的是負(fù)功率乘以正等于負(fù)。此負(fù)功率表示線圈正在將存儲(chǔ)的電能返回電源。
在電壓波形的負(fù)一半之間180°和270°電容器的電流和電源電壓均為負(fù)值,導(dǎo)致一段時(shí)間的正功率。這段正功率表示線圈正在消耗電源的電能。在270°和360°,有一個(gè)負(fù)電壓和一個(gè)正電流再次表明一個(gè)負(fù)功率。
在電壓波形的一個(gè)完整周期內(nèi),同樣的情況存在于純感應(yīng)電路中,我們有兩個(gè)相同的正脈沖和負(fù)脈沖,其平均值為零。因此,從電源傳輸?shù)诫娙萜鞯墓β逝c電容器返回給電源的功率完全相等,因此沒有實(shí)際功率消耗,因?yàn)殡娫唇惶娴亓魅牒土鞒鲭娫?。這意味著一個(gè)純電容器在一個(gè)完整周期內(nèi)所消耗的總功率為零,因此電容器的無功功率不執(zhí)行任何實(shí)際工作。
電源示例2電阻為30歐姆、電感為200mH的電磁線圈與230VAC、50Hz電源相連。計(jì)算:(a)螺線管阻抗,(b)螺線管消耗的電流,(c)電流和外加電壓之間的相位角,以及(d)螺線管消耗的平均功率。
給定數(shù)據(jù):R=30Ω,L=200mH,V=230V,?=50Hz。
(a) 電磁線圈阻抗(Z):
(b) 電磁線圈消耗的電流(I):
(c) 相角θ:
(d) 電磁線圈消耗的平均交流功率:
我們?cè)谶@里看到,在交流電路中,在純無源電路中流動(dòng)的電壓和電流通常是異相的,因此,它們不能用來完成任何實(shí)際工作。我們還看到,在直流(DC)電路中,電功率等于電壓乘以電流,或P=V*I,但我們不能以與交流電路相同的方式計(jì)算,因?yàn)槲覀冃枰紤]任何相位差。
在純電阻電路中,電流和電壓都是同相的,所有的電能都被電阻消耗掉,通常是熱量。因此,所有電源都不會(huì)返回到電源或電路。
然而,在含有電抗的純電感或純電容電路中,(X)電流將使電壓超前或滯后正好90度(相角),因此電源既被存儲(chǔ)又被返回電源。因此,一個(gè)完整周期內(nèi)計(jì)算的平均功率將等于零。
電阻消耗的電功率(R)稱為真功率或?qū)嵐β剩?jiǎn)單地用均方根電壓乘以均方根電流即可得到。由電抗(X)存儲(chǔ)的功率稱為無功功率,通過將電壓、電流和它們之間相角的正弦相乘得到。
相位角的符號(hào)是θ(θ),表示交流電路相對(duì)于總無功阻抗(Z)的低效性,該阻抗與電路中的電流流動(dòng)相反。
*博客內(nèi)容為網(wǎng)友個(gè)人發(fā)布,僅代表博主個(gè)人觀點(diǎn),如有侵權(quán)請(qǐng)聯(lián)系工作人員刪除。