博客專欄

EEPW首頁 > 博客 > 芯片設(shè)計全流程概述

芯片設(shè)計全流程概述

發(fā)布人:旺材芯片 時間:2023-07-20 來源:工程師 發(fā)布文章

來源:半導(dǎo)體封裝工程師之家


芯片設(shè)計分為前端設(shè)計和后端設(shè)計,前端設(shè)計(也稱邏輯設(shè)計)和后端設(shè)計(也稱物理設(shè)計)并沒有統(tǒng)一嚴(yán)格的界限,涉及到與工藝有關(guān)的設(shè)計就是后端設(shè)計。圖片

1、規(guī)格制定

芯片規(guī)格,也就像功能列表一樣,是客戶向芯片設(shè)計公司(稱為Fabless,無晶圓設(shè)計公司)提出的設(shè)計要求,包括芯片需要達到的具體功能和性能方面的要求。

2、詳細設(shè)計

Fabless根據(jù)客戶提出的規(guī)格要求,拿出設(shè)計解決方案和具體實現(xiàn)架構(gòu),劃分模塊功能。3、HDL編碼

使用硬件描述語言(VHDL,Verilog HDL,業(yè)界公司一般都是使用后者)將模塊功能以代碼來描述實現(xiàn),也就是將實際的硬件電路功能通過HDL語言描述出來,形成RTL(寄存器傳輸級)代碼。

4、仿真驗證

仿真驗證就是檢驗編碼設(shè)計的正確性,檢驗的標(biāo)準(zhǔn)就是第一步制定的規(guī)格。看設(shè)計是否精確地滿足了規(guī)格中的所有要求 。規(guī)格是設(shè)計正確與否的黃金標(biāo)準(zhǔn),一切違反,不符合規(guī)格要求的,就需要重新修改設(shè)計和編碼。設(shè)計和仿真驗證是反復(fù)迭代的過程,直到驗證結(jié)果顯示完全符合規(guī)格標(biāo)準(zhǔn)。

5、邏輯綜合――Design Compiler仿真驗證通過,進行邏輯綜合。邏輯綜合的結(jié)果就是把設(shè)計實現(xiàn)的HDL代碼翻譯成門級網(wǎng)表netlist。綜合需要設(shè)定約束條件,就是你希望綜合出來的電路在面積,時序等目標(biāo)參數(shù)上達到的標(biāo)準(zhǔn)。 邏輯綜合需要基于特定的綜合庫,不同的庫中,門電路基本標(biāo)準(zhǔn)單元(standard cell)的面積,時序參數(shù)是不一樣的。所以,選用的綜合庫不一樣,綜合出來的電路在時序,面積上是有差異的。一般來說,綜合完成后需要再次做仿真驗證(這個也稱為后仿真,之前的稱為前仿真)。

邏輯綜合工具Synopsys的Design Compiler。

6、STA

Static Timing Analysis(STA),靜態(tài)時序分析,這也屬于驗證范疇,它主要是 在時序上對電路進行驗證,檢查電路是否存在建立時間(setup time)和保持時間(hold time)的違例(violation)。這個是數(shù)字電路基礎(chǔ)知識,一個寄存器出現(xiàn)這兩個時序違例時,是沒有辦法正確采樣數(shù)據(jù)和輸出數(shù)據(jù)的,所以以寄存器為基礎(chǔ)的數(shù)字芯片功能肯定會出現(xiàn)問題。

STA工具有Synopsys的Prime Time。

7、形式驗證

這也是驗證范疇,它是從功能上(STA是時序上)對綜合后的網(wǎng)表進行驗證。 常用的就是等價性檢查方法,以功能驗證后的HDL設(shè)計為參考,對比綜合后的網(wǎng)表功能,他們是否在功能上存在等價性。這樣做是為了保證在邏輯綜合過程中沒有改變原先HDL描述的電路功能。

形式驗證工具有Synopsys的Formality。


從設(shè)計程度上來講,前端設(shè)計的結(jié)果就是得到了芯片的門級網(wǎng)表電路。

Backend design flow :

1、DFT
Design For Test,可測性設(shè)計。芯片內(nèi)部往往都自帶測試電路,DFT的目的就是在設(shè)計的時候就考慮將來的測試。DFT的常見方法就是,在設(shè)計中插入掃描鏈,將非掃描單元(如寄存器)變?yōu)閽呙鑶卧?/span>關(guān)于DFT,有些書上有詳細介紹,對照圖片就好理解一點。DFT工具Synopsys的DFT Compiler2、布局規(guī)劃(FloorPlan)布局規(guī)劃就是 放置芯片的宏單元模塊,在總體上確定各種功能電路的擺放位置,如IP模塊,RAM,I/O引腳等等。布局規(guī)劃能直接影響芯片最終的面積。工具為Synopsys的Astro3、CTSClock Tree Synthesis, 時鐘樹綜合,簡單點說就是時鐘的布線。 由于時鐘信號在數(shù)字芯片的全局指揮作用,它的分布應(yīng)該是對稱式的連到各個寄存器單元,從而使時鐘從同一個時鐘源到達各個寄存器時,時鐘延遲差異最小。這也是為什么時鐘信號需要單獨布線的原因。CTS工具有Synopsys的Physical Compiler。

4、布線(Place & Route)

這里的布線就是 普通信號布線了,包括各種標(biāo)準(zhǔn)單元(基本邏輯門電路)之間的走線。比如我們平常聽到的0.13um工藝,或者說90nm工藝,實際上就是這里金屬布線可以達到的最小寬度,從微觀上看就是MOS管的溝道長度。工具有Synopsys的Astro。5、寄生參數(shù)提取由于導(dǎo)線本身存在的電阻,相鄰導(dǎo)線之間的互感,耦合電容在芯片內(nèi)部會產(chǎn)生信號噪聲,串?dāng)_和反射。這些效應(yīng)會產(chǎn)生信號完整性問題,導(dǎo)致信號電壓波動和變化,如果嚴(yán)重就會導(dǎo)致信號失真錯誤。 提取寄生參數(shù)進行再次的分析驗證,分析信號完整性問題是非常重要的。工具Synopsys的Star-RCXT。

6、版圖物理驗證

對完成布線的物理版圖進行功能和時序上的驗證,驗證項目很多,如LVS(Layout Vs Schematic)驗證,簡單說,就是版圖與邏輯綜合后的門級電路圖的對比驗證;DRC(Design Rule Checking):設(shè)計規(guī)則檢查,檢查連線間距,連線寬度等是否滿足工藝要求, ERC(Electrical Rule Checking):電氣規(guī)則檢查,檢查短路和開路等電氣 規(guī)則違例;等等。

工具為Synopsys的Hercules。

實際的后端流程還包括電路功耗分析,以及隨著制造工藝不斷進步產(chǎn)生的DFM(可制造性設(shè)計)問題,在此不贅述了。

物理版圖驗證完成也就是整個芯片設(shè)計階段完成,下面的就是芯片制造了。物理版圖以GDS II的文件格式交給芯片代工廠(稱為Foundry)在晶圓硅片上做出實際的電路,再進行封裝和測試,就得到了我們實際看見的芯片。


-End-


*博客內(nèi)容為網(wǎng)友個人發(fā)布,僅代表博主個人觀點,如有侵權(quán)請聯(lián)系工作人員刪除。



關(guān)鍵詞: 芯片設(shè)計

相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉