新聞中心

EEPW首頁 > 電源與新能源 > 設計應用 > 為你的應用選擇合適的高壓MOSFET

為你的應用選擇合適的高壓MOSFET

作者: 時間:2011-05-10 來源:網絡 收藏

高電壓技術在過去幾年中經歷了很大變化,給電源工程師帶來了不少。只要提供有關不同技術的使用指南,就可以幫助工程師的部件以達成其的效率和成本目標。了解不同部件的細微差別及不同開關電路中的應力,能夠幫助工程師避免諸多問題。本文除介紹簡單的導通阻抗RDS(on) 以及其它相關元素之外,并會探討更高電流密度與更快開關速度及的意義,提供使用更先進的MOSFET取代舊型MOSFET的經驗法則,并探討在設計中利用新型MOSFET來獲得更低RDS(on) 與更低閘極電荷的指引。

本文引用地址:http://m.butianyuan.cn/article/179129.htm

  高電

  壓MOSFET部件采用兩種基本制程技術:一種是比較傳統的平面制程,如飛兆半導體的QFET UniFET。另一種是較新的電荷平衡技術。平面制程非常穩(wěn)定和耐用,但是對于確定的活動區(qū)(active area)與崩潰電壓,其導通阻抗RDS(on)遠遠高于電荷平衡技術(如飛兆半導體的SuperFET以及SupreMOS MOSFET)的RDS(on)。對于特定的RDS(on),活動區(qū)大小的顯著差異會通過輸出電容與閘極電荷影響到MOSFET組件的熱阻與開關速度等其它特性。圖1所示為這三種制程技術的部份區(qū)別。

  在特定崩潰電壓與尺寸條件下,若傳統MOSFET的RDS(on)為1Ω,最新的電荷平衡型部件(如飛兆半導體的SupreMOS MOSFET)的RDS(on)只有不到0.25Ω。如果僅僅關注RDS(on),可能會誤認為,可以在現有中采用傳統部件四份之一大小的MOSFET部件。這種想法是錯誤的,因為當裸晶(die)尺寸本身更小時,它的熱阻就會更高。因此,當你認識到MOSFET絕不僅僅是一個由RDS(on)表征的活動區(qū),上述含義得到進一步驗證。它還存在被稱之為“邊緣終端 (edge terminations)”的邊緣環(huán)區(qū),旨在防止部件出現裸晶邊緣的電壓崩潰,而讓部件在活動區(qū)崩潰。對于更小的MOSFET,特別是對于高電壓部件,該邊緣區(qū)可以大于活動區(qū),如圖2所示。雖然邊緣區(qū)對MOSFET的RDS(on) 沒有什么貢獻,但它有利于接面到管殼的熱阻RэJC。因此,當RDS較高時,具有非常小的活動區(qū)并不能顯著降低MOSFET的整體成本。

  要了解這些差異,最好先了解一些適用于所有半導體部件的基本公式。對于任何半導體部件來說,接面溫度(Tj)都是一個關鍵參數。一旦超過最大接面溫度Tjmax ,組件就會失效。在較高的接面溫度下,RDS(on)較高,寄生二極管的反向恢復性能較差,從而導致較高的功率損耗。因此,保持低Tj 有助于提高系統的效率。了解這些影響因素并能夠計算出接面溫度是極有幫助的。接面溫度可由算式1計算:

  ● Tj = Ta+Pd*RэJA 算式1

  算式1包含了三個主要因素:周圍環(huán)境溫度Ta,功耗Pd,以及接面至環(huán)境(junction-to-ambient)熱阻RэJA,。Pd包括部件的傳導損耗與開關損耗。

  這可由算式2計算:

  ● Pd=D*RDS(on)*ID2+fsw*(Eon+Eoff) 算式 2

  算式2中第一項代表的傳導損耗很簡單,其中D是工作周期,ID是泄極電流,RDS(on)是泄極至源極阻抗,它也是電流與溫度的函數。用戶應該查閱數據手冊中關于適用于本運行環(huán)境的、在近似接面溫度與泄極電流條件下的具體值,以獲得RDS(on)的近似值。D、ID與RDS(on)的準確數值常常很難獲得,所以工程師往往合理值的上限來進行第一次計算。例如,0.3左右的D,Tjmax下的RDS(on),以及一般在最壞情況(即低線輸入電壓和最大負載)下計算得到的Id,就是一組很好的初始值。單獨看上述數據,也許有人會認為只需要考慮一個參數RDS(on),但是為了得到更低的RDS(on),通常需要一個更大的裸晶,而這會影響到開關損耗和寄生二極管的恢復性能。

  功耗公式的第二部份與開關損耗有關。這種表示形式更常見于IGBT,但fsw*(Eon+Eoff) 則能夠更具體地描述功率損耗。在不同電路情況下,可能沒有導通損耗(Eon)或關斷損耗(Eoff),或者是導通損耗或關斷損耗非常低。對于MOSFET,這些損耗受到開關速度與恢復二極管的影響。在平面型MOSFET中,通過壽命控制來提高寄生二極管的性能比在電荷平衡型部件中更為容易。因此,如果你的應用需要MOSFET中的寄生二極管導通,例如,馬達驅動的UPS和一些鎮(zhèn)流器應用,采用一個寄生二極管特性更佳的的MOSFET比具有最低RDS(on)的MOSFET效果更好。最后,這些損耗要乘以開關頻率(fsw),關鍵是設計的閘極驅動電路,而MOSFET的輸入電容是該設計中的重要因素。

電荷放大器相關文章:電荷放大器原理

上一頁 1 2 下一頁

評論


相關推薦

技術專區(qū)

關閉