一種基于機(jī)器視覺(jué)的結(jié)構(gòu)光三維掃描系統(tǒng)
隨著制造技術(shù)的快速發(fā)展和制造領(lǐng)域的不斷擴(kuò)大,使得對(duì)制造產(chǎn)品的質(zhì)量要求也越來(lái)越高。傳統(tǒng)意義上很多對(duì)產(chǎn)品的檢測(cè)方法已經(jīng)不能適應(yīng)現(xiàn)代制造業(yè)的要求。計(jì)算機(jī)視覺(jué)檢測(cè)技術(shù)具有操作、維護(hù)簡(jiǎn)單,測(cè)量速度快,精度高,測(cè)量范圍廣等眾多無(wú)可比擬的優(yōu)點(diǎn),被認(rèn)為是檢測(cè)技術(shù)領(lǐng)域中最具有發(fā)展?jié)摿Φ募夹g(shù)。機(jī)器視覺(jué)被稱(chēng)為自動(dòng)化的眼睛,在國(guó)民經(jīng)濟(jì)、科學(xué)研究及國(guó)防建設(shè)上都有著廣泛的應(yīng)用。機(jī)器視覺(jué)不但可以實(shí)現(xiàn)無(wú)接觸觀測(cè),還可以長(zhǎng)時(shí)間保持精度,因此,機(jī)器視覺(jué)系統(tǒng)可以廣泛應(yīng)用于長(zhǎng)時(shí)間的、惡劣的環(huán)境。
在此探討了線性結(jié)構(gòu)光三維掃描系統(tǒng)的特點(diǎn)。設(shè)計(jì)一種能夠測(cè)量物體深度的結(jié)構(gòu)光三維掃描系統(tǒng),通過(guò)圖像處理技術(shù)對(duì)激光條紋進(jìn)行提取,并建立數(shù)學(xué)模型,采用三角法測(cè)量方法獲取深度信息,對(duì)工件圖像進(jìn)行重建。最后,實(shí)驗(yàn)結(jié)果驗(yàn)證了該系統(tǒng)的有效性。
1 基于機(jī)器視覺(jué)的結(jié)構(gòu)光三維掃描系統(tǒng)模型
結(jié)構(gòu)光測(cè)量是將激光器發(fā)出的光束經(jīng)過(guò)光學(xué)系統(tǒng)形成某種形式的光,包括點(diǎn)、單線、多線、單圓、同心多圓、網(wǎng)格、十字交叉、灰度編碼圖案、顏色編碼圖案和隨機(jī)紋理投影等投向景物,在景物上形成特定的圖案,并通過(guò)圖像處理,對(duì)圖案進(jìn)行提取,然后根據(jù)三角法進(jìn)行計(jì)算,從而得到景物表面的深度信息。根據(jù)投射光圖案的種類(lèi)可分為單點(diǎn)法、單線法和圖案法。
1.1 系統(tǒng)的硬件結(jié)構(gòu)設(shè)計(jì)
如圖1所示,文中所設(shè)計(jì)的結(jié)構(gòu)光三維掃描系統(tǒng)由3大部分組成,分別是運(yùn)動(dòng)平臺(tái)、激光器和攝像機(jī)。系統(tǒng)的運(yùn)動(dòng)平臺(tái)由導(dǎo)軌絲杠機(jī)構(gòu)成,絲杠上的滑塊帶動(dòng)工件左右運(yùn)動(dòng),絲杠由伺服馬達(dá)驅(qū)動(dòng)。攝像機(jī)垂直于導(dǎo)軌運(yùn)動(dòng)平面。激光器和攝像機(jī)與攝像機(jī)呈固定角度安裝。激光器所射出的線形光斑垂直于工件的運(yùn)動(dòng)方向。激光器與攝像機(jī)的相對(duì)角度可以調(diào)節(jié),調(diào)節(jié)范圍由20~~45。之間。運(yùn)動(dòng)平臺(tái)行程為100 mm,圖像分辨率為0.2 mm/pixel。
1.2 系統(tǒng)的數(shù)學(xué)模型建立
系統(tǒng)的數(shù)學(xué)模型如圖2所示。工件放置于運(yùn)動(dòng)平臺(tái)上,攝像機(jī)垂直安裝在運(yùn)動(dòng)平臺(tái)正上方,激光與水平面的夾角θ,激光器產(chǎn)生一字的線性結(jié)構(gòu)光,由于物體表面與運(yùn)動(dòng)平臺(tái)的高度差,條形光斑同時(shí)照射在物體上的A處和平臺(tái)的B處。用攝像機(jī)獲得光斑的圖像,經(jīng)圖像采集卡輸入至計(jì)算機(jī),經(jīng)過(guò)圖像處理,可以測(cè)量出點(diǎn)A與點(diǎn)B的距離d,根據(jù)三角法公式tanθ=H/d,可以通過(guò)光斑間距d計(jì)算出工件的高度H。因此物坐標(biāo)和像坐標(biāo)對(duì)應(yīng)關(guān)系為:
其中:xg,yg,zg分別為物坐標(biāo);k為像素一毫米轉(zhuǎn)換系數(shù);xi,yi分別為圖像坐標(biāo)。
2 結(jié)構(gòu)光光斑提取的相關(guān)理論與方法
從系統(tǒng)的數(shù)學(xué)模型可知,物體的深度信息H主要受θ和d的影響,而θ主要表現(xiàn)為系統(tǒng)誤差。因此,有必要對(duì)條紋間距d進(jìn)行深入研究,以提高系統(tǒng)的精度。其主要包括:圖像增強(qiáng)、圖像二值化以及圖像細(xì)化。
2.1 圖像增強(qiáng)
圖像增強(qiáng)主要增加圖像的對(duì)比度,突出圖像中的高頻部分。算法描述為:設(shè)原圖像的灰度級(jí)為x,其最大和最小灰度級(jí)分別為xmax和xmin期望圖像灰度級(jí)的最大和最小值分別為ymax和ymin則與原圖像灰度級(jí)x相對(duì)應(yīng)的期望灰度級(jí):
式(3)是一個(gè)線性函數(shù):參數(shù)n是函數(shù)的斜率;6是函數(shù)在y軸的截距;x表示輸入圖像的灰度;y表示輸出圖像的灰度。
2.2 圖像二值化
這里所采用的256色的灰度圖像,通過(guò)選取閾值t,將小于t灰度全設(shè)為0,即黑色;將大于t的灰度全部設(shè)為255,即白色。這樣,目標(biāo)就從背景中獨(dú)立出來(lái)。采用文獻(xiàn)提出的一種基于熵的自動(dòng)閾值提取方法。一幅圖像的直方圖可以表示為:
式中:G表示灰度值的總和;g(h)表示圖像灰度等級(jí)為h的像素個(gè)數(shù)。一幅具有[O,N一1]灰度值范圍圖像的直方圖的熵可以表示為:
式(6)中,ta。表示圖像分割的閾值,則不同閾值范圍內(nèi)的熵可以表示為:
總熵可以表示為。通過(guò)求解一組優(yōu)化的閾值,可以使總熵達(dá)到最大。其中:L表示閾值的個(gè)數(shù),a―O,1,…,L一1。
2.3 圖像細(xì)化
圖像的細(xì)化是一個(gè)通過(guò)迭代去除目標(biāo)圖像上不影響連通性的輪廓象素點(diǎn),以得到最終寬度為一個(gè)像素的圖像骨架的過(guò)程。對(duì)被處理的圖像進(jìn)行細(xì)化有助于突出圖像的形狀特點(diǎn)和減少冗余的信息量。
3 實(shí)驗(yàn)結(jié)果與分析
3.1 系統(tǒng)標(biāo)定
實(shí)驗(yàn)通過(guò)基于機(jī)器視覺(jué)結(jié)構(gòu)光三維掃描系統(tǒng)獲取扳手三維圖像,為獲得準(zhǔn)確的三維圖像,首先采用40 mm的標(biāo)準(zhǔn)塊規(guī)進(jìn)行測(cè)量,測(cè)量結(jié)果與誤差如表1所示。圖3為三維掃描系統(tǒng)的測(cè)量軟件界面。
評(píng)論