新聞中心

EEPW首頁 > 專題 > AI在邊緣設(shè)備上的發(fā)展機(jī)會

AI在邊緣設(shè)備上的發(fā)展機(jī)會

作者:王瑩 王金旺 時(shí)間:2018-04-26 來源:電子產(chǎn)品世界 收藏
編者按:AI不僅僅發(fā)生在對計(jì)算要求高的云端,還會出現(xiàn)在數(shù)量更加龐大的物聯(lián)網(wǎng)邊緣端,例如消費(fèi)電子、汽車電子、工業(yè)控制、測試測量等領(lǐng)域。為此,本媒體邀請部分AI芯片及EDA/IP廠商,介紹邊緣AI的最新技術(shù)進(jìn)展和解決方案。

作者 / 王瑩 王金旺 《電子產(chǎn)品世界》編輯(北京 100036)

本文引用地址:http://m.butianyuan.cn/article/201804/379031.htm

摘要不僅僅發(fā)生在對計(jì)算要求高的云端,還會出現(xiàn)在數(shù)量更加龐大的物聯(lián)網(wǎng)邊緣端,例如消費(fèi)電子、汽車電子、工業(yè)控制、測試測量等領(lǐng)域。為此,本媒體邀請部分芯片及EDA/IP廠商,介紹邊緣的最新技術(shù)進(jìn)展和解決方案。

瑞薩AI終端問題解決方案

  針對終端上的AI執(zhí)行,為了適配嵌入式系統(tǒng),除了耗電問題以外,還有其他需解決的問題。首先,將通過云端開放資源學(xué)習(xí)過的AI導(dǎo)入嵌入式系統(tǒng)的內(nèi)存資源,其次,需要準(zhǔn)備、提供適合執(zhí)行AI的最優(yōu)設(shè)備;再次,不僅是單純處理,為實(shí)施實(shí)時(shí)性能、控制,還需具備安全性和可靠性。

  瑞薩電子在終端嵌入AI,稱為e-AI(Embedded Artificial Intelligence)。瑞薩從去年開始免費(fèi)開放了e-AI Translator工具。這是可將通過Caffe、TensorFlow學(xué)習(xí)過的AI嵌入到所有MCU/MPU的壓縮工具。瑞薩電子的MCU/MPU產(chǎn)品線可以通過該工具,根據(jù)執(zhí)行AI的大小,從豐富的產(chǎn)品線中選擇適配產(chǎn)品。

  瑞薩考慮不僅在CPU,而且在終端中支持AI的應(yīng)用需求。瑞薩將針對AI提供其獨(dú)特的處理器DRP (Dynamically Reconfigurable Processor)。就并行性而言,DRP優(yōu)于CPU;而就耗電量而言,DRP又優(yōu)于難以將全部數(shù)據(jù)導(dǎo)入的GPU。在相同耗電量的條件下,其測量結(jié)果是CPU的100倍以上,GPU的10倍以上。通過使用DRP,客戶將AI的識別功能應(yīng)用于相機(jī)、機(jī)器人、AR眼鏡?,F(xiàn)在已經(jīng)有不少客戶在其新產(chǎn)品中積極推廣使用該技術(shù)。

  瑞薩電子在其獨(dú)有產(chǎn)品SOTB(Si On Thin Buried-oxide)上也支持e-AI。通過利用該技術(shù),可將MCU的工作電流大幅降低至1/10,待機(jī)電流降低至1/100。該技術(shù)不僅可大幅延長電池壽命,還使利用熱能、振動、光、無線電波等能量轉(zhuǎn)換成電源的系統(tǒng)操作成為可能。對于傳感器網(wǎng)絡(luò)和健康看護(hù)可穿戴設(shè)備而言,通過在SOTB上嵌入e-AI,搭建僅將AI識別判斷后的結(jié)果傳輸?shù)南到y(tǒng)成為可能,從而大幅節(jié)電?,F(xiàn)在很多顧客開始探討用SOTB來替代從前系統(tǒng)中的電池。

提高端云有效協(xié)作

  恩智浦對邊緣側(cè)AI和(物聯(lián)網(wǎng))戰(zhàn)略作用非常重視。我們認(rèn)為大數(shù)據(jù)、和AI的應(yīng)用發(fā)展要求邊緣端具有以下能力:

  1)對智能家居、工業(yè)互聯(lián)、智慧城市等提供智能化、快速和有效的支持;

  2)從作為云端提供數(shù)據(jù)采集和控制反饋的連接通道,到云端訓(xùn)練和深度學(xué)習(xí),邊緣信息采集和AI識別的邊云一體化方向發(fā)展;

  3)及時(shí)接收云端廣播訓(xùn)練好的模型和提取的特征,在邊緣端提供有效的AI識別作用。

  新趨勢對芯片和算法帶來的新要求

  這樣的新趨勢也對芯片、計(jì)算架構(gòu)及算法產(chǎn)生了新的要求。

  首先,要求邊緣端的芯片對網(wǎng)絡(luò)傳輸、安全算法運(yùn)算、數(shù)據(jù)存儲和AI算法有足夠的支持能力,即要有一定的綜合運(yùn)算能力。具體包括;

  1)網(wǎng)絡(luò)傳輸表示要及時(shí)地將用于學(xué)習(xí)和AI訓(xùn)練的數(shù)據(jù)送到云端,避免網(wǎng)絡(luò)擁塞;

  2)要對數(shù)據(jù)進(jìn)行安全保護(hù)和加解密的運(yùn)算支持,要對設(shè)備、用戶和應(yīng)用提供可信的認(rèn)證;

  3)對數(shù)據(jù)提供本地存儲和AI智能運(yùn)算能力。

  其次,對計(jì)算架構(gòu)和算法產(chǎn)生了新要求,具體包括:

  1) 提供端云有效配合的計(jì)算架構(gòu),實(shí)現(xiàn)云端學(xué)習(xí)和訓(xùn)練,邊緣端特征提取和識別的有效AI應(yīng)用的支持;

  2)支持云端將學(xué)習(xí)好的模型及時(shí)廣播給聯(lián)接的邊緣設(shè)備,邊緣端利用訓(xùn)練好的模型對新數(shù)據(jù)進(jìn)行識別和AI處理;

  3)提供適用于邊緣端的AI算法、學(xué)習(xí)框架、運(yùn)算庫和編譯環(huán)境。

  恩智浦針對這樣的挑戰(zhàn),在芯片SoC上提供了各種硬件加速引擎,包括網(wǎng)絡(luò)通信、安全存儲運(yùn)算、AI運(yùn)算,保證芯片在邊緣端強(qiáng)大的AI運(yùn)算能力;提供了支持的EdgeScale平臺,除了安全管理和邊緣設(shè)備管理外,它會封裝用于AI的算法和系統(tǒng)庫,簡化AI的開發(fā)。并提供AI應(yīng)用的開發(fā)示例,例如人臉識別、OCR、語音識別、物體識別等,為AI應(yīng)用的快速落地帶來方便。另外,它提供了針對工業(yè)互聯(lián)場景的邊緣平臺架構(gòu)OpenIL,從實(shí)時(shí)性、安全性、穩(wěn)定性和傳輸性上對邊緣端提供有效保障。

應(yīng)用于的邊緣 AI 視覺

  汽車中的每一個(gè)傳感器都需要得到精密算法的支持,算法可以生成傳感器數(shù)據(jù)的感知解讀。最新趨勢是利用深度學(xué)習(xí)算法來生成感知解讀。不過,深度學(xué)習(xí)算法必須通過大量可能出現(xiàn)的情境加以訓(xùn)練,才能學(xué)會如何去解讀各種可能出現(xiàn)的傳感器數(shù)據(jù)。訓(xùn)練后,為了實(shí)現(xiàn)車輛的安全操控,深度學(xué)習(xí)算法需要極低時(shí)延的超高計(jì)算性能。這必須通過低功耗熱約束且延長電動汽車的電池續(xù)航時(shí)間來實(shí)現(xiàn)。賽靈思可提供所需的高性能、功率效率和自適應(yīng)性,充分滿足汽車中邊緣AI 的需求。

  賽靈思旨在利用邊緣 AI 視覺幫助實(shí)現(xiàn)自動駕駛車輛,讓城市更安全,讓工廠具有更高生產(chǎn)力,這也是業(yè)界發(fā)展趨勢所在。這一技術(shù)創(chuàng)新正在眾多層面不斷快速演進(jìn)和發(fā)展,如系統(tǒng)、算法以及傳感器層面等。賽靈思技術(shù)可對芯片上的晶體管功能進(jìn)行深層的細(xì)化控制,從而幫助創(chuàng)新人員實(shí)現(xiàn)更高的靈活應(yīng)變性。

  這種 AI 創(chuàng)新在自動駕駛汽車的開發(fā)中日益顯現(xiàn)。例如BMW 760i(2010 款)中的早期主動巡航控制使用單一的前視雷達(dá),新投產(chǎn)的特斯拉 Model 3將傳感器配置提升為 8 個(gè)高分辨率視頻攝像頭、12 個(gè)超聲波傳感器和一個(gè)前視雷達(dá),可實(shí)現(xiàn)司機(jī)監(jiān)控操作的自動駕駛功能(僅作為駕駛輔助功能,并非完全自動駕駛)。隨著全自動駕駛汽車面臨的挑戰(zhàn)不斷得到解決,傳感器的數(shù)量與類型也將持續(xù)增加,LIDAR、紅外線視頻等技術(shù)將嶄露頭角,雷達(dá)與攝像頭的數(shù)量也越來越多。

  邊緣 AI 性能實(shí)證(與 NVIDIA Tegra TX2 相比):

  1)3 倍的機(jī)器學(xué)習(xí)推導(dǎo)性能;

  2)42 倍的傳感器處理性能;

  3)每幅圖像實(shí)時(shí)性能的時(shí)延僅為 0.33 ms。

Arm三大平臺助力建設(shè)開放式AI生態(tài)系統(tǒng)

  AI能力已經(jīng)從云端向包括邊緣和終端的前端迅速遷移,現(xiàn)階段的主要挑戰(zhàn)是前端的成本和功耗限制下的AI計(jì)算能力提升要求及軟件生態(tài)。邊緣AI算力已經(jīng)開始快速迭代,多數(shù)的檢測和識別任務(wù)將會在前端就地完成,設(shè)備的響應(yīng)速度、可靠性會提高,數(shù)據(jù)的隱私性會提高。但如何保護(hù)算法產(chǎn)權(quán)自身的安全性,同時(shí)降低應(yīng)用的開發(fā)難度和普及門檻需要解決。

  芯片作為前端智能應(yīng)用的基礎(chǔ)支撐載體,如何解決以上相關(guān)挑戰(zhàn),發(fā)揮Arm生態(tài)優(yōu)勢,加強(qiáng)產(chǎn)業(yè)協(xié)作是不可忽略的一環(huán)。Arm中國和生態(tài)伙伴創(chuàng)立的OPEN AI LAB提供優(yōu)化的算法庫HCL、算法模型加速引擎Tengine和SDK開發(fā)包AID,致力于提升前端AI計(jì)算效率、降低應(yīng)用開發(fā)門檻。同時(shí),Arm人工智能生態(tài)聯(lián)盟AIEC致力于推動從芯片、算法、解決方案、系統(tǒng)集成、部署落地的全產(chǎn)業(yè)鏈協(xié)作,加速AI前端應(yīng)用落地和普及。

  除此以外,Arm也為滿足用戶對移動設(shè)備、智能電視更高要求的視覺體驗(yàn)、4K HDR視頻等新興需求持續(xù)研發(fā)新IP及解決方案。顯示技術(shù)、圖層數(shù)據(jù)處理能力、增值視頻體驗(yàn),這些都是Arm現(xiàn)在及未來賦予廣大移動用戶的價(jià)值所在。

  Arm三大平臺方案

  Arm著力于為合作伙伴提供平臺型解決方案,目前已推出三大平臺:

  一是機(jī)器學(xué)習(xí)平臺Project Trillium,全面支持主流的深度學(xué)習(xí)模型以及傳統(tǒng)CV。開發(fā)者能夠繼續(xù)使用他們首選的框架和工具,經(jīng)Arm開發(fā)軟件無縫轉(zhuǎn)換結(jié)果后,可在底層平臺上運(yùn)行。

  其二是平臺安全架構(gòu)PSA,為安全提供了一套全面的安全指導(dǎo)方針,使從芯片制造商到設(shè)備開發(fā)商,再到云服務(wù)平臺等價(jià)值鏈中的每位成員都能成功實(shí)現(xiàn)安全運(yùn)行。

  其三是Arm Mbed平臺,支持多協(xié)議,將IoT設(shè)備安全地連接至云,將數(shù)據(jù)安全地送上云。

  以上三大平臺不僅賦能合作伙伴創(chuàng)新應(yīng)用解決方案,更是Arm致力共建產(chǎn)業(yè)標(biāo)準(zhǔn)與開發(fā)者生態(tài)、激活增值解決方案與服務(wù)的基礎(chǔ)。Arm始終希望,聯(lián)合行業(yè)價(jià)值鏈中的所有成員,合力建設(shè)開放式協(xié)作創(chuàng)新與共同成長的生態(tài)系統(tǒng)。



上一頁 1 2 下一頁

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉