淺述如何借用多相位升壓轉(zhuǎn)換器改善電源供應(yīng)效能
升壓電源供應(yīng)器常用來(lái)將低電壓輸入轉(zhuǎn)換成較高電壓,但隨著電源供應(yīng)的功率需求增加,它們所無(wú)法承受的電流應(yīng)力(current stress)也可能出現(xiàn)。本文說(shuō)明交錯(cuò)式升壓技術(shù)如何大幅減少電路應(yīng)力(circuit stress),并對(duì)這種新方法和傳統(tǒng)的升壓轉(zhuǎn)換器進(jìn)行分析比較。
高功率升壓轉(zhuǎn)換器的需求是由眾多工業(yè)和汽車應(yīng)用所推動(dòng),其中許多應(yīng)用使用12 V輸入電壓,但卻需要更高的非隔離式輸出電壓,此時(shí)升壓轉(zhuǎn)換架構(gòu)就是常被選用的一種技術(shù)。本文將以一個(gè)輸入電壓為12V,輸出為37V@7A的例子討論電磁線圈驅(qū)動(dòng)器的電源供應(yīng)架構(gòu)選擇。在單相位電源供應(yīng)中,輸入和輸出電容的漣波電流都很大,我們將證明雙相位技術(shù)可大幅的降低漣波。至于電源供應(yīng)器的其它規(guī)格需求則如表1所列。這個(gè)電源供應(yīng)器必須承受電磁線圈啟動(dòng)和關(guān)閉時(shí)出現(xiàn)的大電流突波,同時(shí)維持高輸出電壓精確度;除此之外,轉(zhuǎn)換效率也很重要,它能將功耗減至最少,并將溫升限制在可接受的範(fàn)圍內(nèi)。37V和7A的輸出代表超過(guò)250W的負(fù)載功耗,就算轉(zhuǎn)換效率達(dá)到91%,電源供應(yīng)仍有25W的功耗散逸,因此需要安裝多個(gè)散熱片。另外,雖然這篇文章并未特別說(shuō)明,但是電源供應(yīng)器的體積和成本也很重要。
架構(gòu)
表2是標(biāo)準(zhǔn)的單相位升壓轉(zhuǎn)換器以及交錯(cuò)式(或雙相位)升壓轉(zhuǎn)換器的線路。在單相位設(shè)計(jì)中,閘極驅(qū)動(dòng)電壓會(huì)加在FET Q1,使得電晶體的汲極電壓,也就是電路的切換點(diǎn)(switching node),被下拉至地電位,此時(shí)輸入電壓會(huì)跨接在電感L1的兩端,導(dǎo)致電流開(kāi)始上升;在這段期間內(nèi),早已充滿電力的輸出電容C2必須獨(dú)自供應(yīng)負(fù)載所需之電流。等到Q1停止導(dǎo)通時(shí),L1為了繼續(xù)維持電流流動(dòng),其兩端的電壓極性會(huì)立刻反轉(zhuǎn),使得切換點(diǎn)的電壓高于輸入電壓,此時(shí)二極體D1進(jìn)入順向偏壓狀態(tài),輸入電源開(kāi)始對(duì)輸出電容C2重新充電,并且供應(yīng)負(fù)載所需的電流。
由于電感器的伏秒乘積在這兩種開(kāi)關(guān)狀態(tài)下必須保持相等,也就是ton×Vin必須等于toff×Voff,因此電感的逆向電壓就成為FET導(dǎo)通時(shí)間,或是負(fù)載週期的函數(shù);改變開(kāi)關(guān)的負(fù)載週期就能控制輸出電壓的大小,其值可由Vout =Vin/(1-d)簡(jiǎn)單公式計(jì)算。此公式只在連續(xù)導(dǎo)通模式(continuous conduction mode)中有效,而該模式的定義則是電感電流在所有時(shí)間都為正值。
如表2所示,在雙相位升壓電路中,每個(gè)相位的工作方式都很像前述的單相位升壓轉(zhuǎn)換器。這兩個(gè)轉(zhuǎn)換器會(huì)以反相180度的方式動(dòng)作,使得輸入和輸出電容的漣波電流互相抵消;藉由這種方式,設(shè)計(jì)人員就能選擇性地減少零件數(shù)目,或者使用與單相位設(shè)計(jì)相同的零件數(shù)目,但是提高電路的工作效能。交錯(cuò)式升壓設(shè)計(jì)會(huì)強(qiáng)迫兩個(gè)功率級(jí)共同提供輸出電流,使得電源輸出由它們平均分擔(dān);另一方面,如果工程師不採(cǎi)用這種設(shè)計(jì),其中一個(gè)功率級(jí)的電流輸出就會(huì)遠(yuǎn)大于另一個(gè)功率級(jí),使得塬有的漣波消除優(yōu)點(diǎn)化為烏有。
交錯(cuò)式電路設(shè)計(jì)實(shí)務(wù)
表3是單相位升壓電路中,輸入電容C1的漣波電流,它的波形和電感電流的波形完全相同,只是不含直流成份。從中可以看出Q1導(dǎo)通時(shí),電流會(huì)朝正的方向逐漸增加,負(fù)載週期比則約等于前述負(fù)載週期公式所定義的0.67。雙相位電路的設(shè)計(jì)理念是讓工作效能達(dá)到單相位設(shè)計(jì)的水準(zhǔn),同時(shí)減少所需的功率零件數(shù)目。交錯(cuò)式設(shè)計(jì)可以減少輸入電容的漣波電流,此優(yōu)點(diǎn)可從表4看出,因?yàn)閮蓚€(gè)功率級(jí)的動(dòng)作相差180度,所以它能將漣波電流的峰至峰值減少一半。由于交錯(cuò)式升壓電路的有效輸入漣波電流基本上就等于單相位設(shè)計(jì)的輸入漣波電流,因此雙相位設(shè)計(jì)的個(gè)別相位漣波電流可以是單相位設(shè)計(jì)的兩倍。
在交錯(cuò)式設(shè)計(jì)中,各個(gè)功率級(jí)的工作頻率和單相位設(shè)計(jì)完全相同,都是100KHz,但由于漣波抵消作用的影響,它的有效輸入和輸出漣波會(huì)變成200 KHz。因此在計(jì)算雙相位設(shè)計(jì)的電感值時(shí),使用的頻率雖和單相位設(shè)計(jì)完全相同,但所能允許的漣波幅度卻會(huì)增加一倍,使得設(shè)計(jì)所需的電感值得以減少一半。值得注意的是,在雙相位設(shè)計(jì)中,輸入電容的有效漣波電流大約等于單相位設(shè)計(jì),因此這兩種設(shè)計(jì)會(huì)使用同樣數(shù)量的輸入電容。
就像輸入電容一樣,交錯(cuò)式設(shè)計(jì)的輸出電容也能享受同樣的好處。表5是單相位設(shè)計(jì)的輸出電容漣波電流,當(dāng)FET導(dǎo)通時(shí),該電容會(huì)提供所有的輸出電流(- 7A,電流從C2流出);當(dāng)FET截止時(shí),會(huì)有相當(dāng)于Iout×d/(1-d),也就是+14A的電流流入輸出電容,并對(duì)它進(jìn)行重新充電。電感的斜率可由波形上端看出,但它不會(huì)造成總均方根值電流增加。若設(shè)計(jì)決定採(cǎi)用鋁電解質(zhì)的輸出電容,則由于其電容值遠(yuǎn)超過(guò)輸出漣波電壓的要求,所以它們的數(shù)目將由個(gè)別漣波電流的額定值決定。表5電流波形的均方根值約為Ipp×√(d×(1-d)),在本設(shè)計(jì)中這等于10Arms。表8所示的單相位測(cè)試電路需要12個(gè)輸出電容,才能滿足總漣波電流的額定值要求。
表6是交錯(cuò)式升壓設(shè)計(jì)中,個(gè)別輸出電容的電流值以及它們的總和,在不考慮電感斜率的情形下,相位A和B的峰至峰電流振幅會(huì)等于單相位設(shè)計(jì)的一半,這是因?yàn)槠漕l率和截止時(shí)間的負(fù)載週期都是單相位設(shè)計(jì)的兩倍。在表6中,綜合電流或總電流的均方根值為5Arms,因此設(shè)計(jì)只需要半數(shù)的輸出電容,就能讓電壓漣波等于單相位設(shè)計(jì)的電壓漣波。
表7是不同負(fù)載週期下的漣波電流抵消效果,垂直線則代表工作點(diǎn)的負(fù)載週期,從中可以看出在此負(fù)載週期下,交錯(cuò)式升壓設(shè)計(jì)的均方根值電流等于單相位設(shè)計(jì)的一半。值得注意的是,50%的負(fù)載週期可以提供完全抵消的效果,使得輸出漣波電流等于零;另一方面,輸出漣波電壓在該工作點(diǎn)上將變得非常小。
表8和表9是單相位和交錯(cuò)式升壓轉(zhuǎn)換器的完整設(shè)計(jì),從單相位設(shè)計(jì)可以看出,它是利用一顆在電壓模式下工作的BiCMOS低功耗電流模式PWM控制器(TI 的UCC38C43)來(lái)同時(shí)驅(qū)動(dòng)兩顆MOSFET電晶體—由于升壓功率級(jí)的電流很大,所以需要兩顆MOSFET。此處還使用一組蕭特基整流器,這是因?yàn)閷㈦娏鞣纸o兩個(gè)整流器的做法并不實(shí)際。由于升壓轉(zhuǎn)換器無(wú)法在短路時(shí)限制輸出電流的大小,所以這裡還使用TPS2490熱插換控制器和過(guò)電流保護(hù)電路,我們?cè)趯?shí)驗(yàn)過(guò)程中發(fā)現(xiàn)這種設(shè)計(jì)可于電流過(guò)大時(shí)將電流切斷。為了將溫度升幅保持在可接受範(fàn)圍內(nèi),我們總共用了3組散熱片。
表8的交錯(cuò)式設(shè)計(jì)則使用UCC38220,它是內(nèi)建可程式最大負(fù)載週期的雙通道交錯(cuò)式PWM控制器,可將電流均分給兩個(gè)功率級(jí)。為了感測(cè)電流大小,設(shè)計(jì)使用了一個(gè)體積小而低成本的電流感測(cè)變壓器,并將它連接至Q5和Q7的汲極接腳。電流感測(cè)訊號(hào)首先會(huì)被濾波,再送到UCC28220的電流感測(cè)輸入接腳,這顆元件會(huì)將電流平均分給兩個(gè)相位;由于交錯(cuò)式設(shè)計(jì)的電流是由兩個(gè)相位共同平分,所以設(shè)計(jì)中使用了兩組蕭特基整流器。電流的降低讓二極體不必再安裝散熱片,于是零件數(shù)目和組裝成本都會(huì)減少。
圖1是這兩種設(shè)計(jì)完成組裝后的電路,我們將其置于同一張電路板以方便比較。單相位設(shè)計(jì)(上半部)大約需要18平方英吋的電路板面積,交錯(cuò)式設(shè)計(jì)(下半部)則會(huì)佔(zhàn)用14平方英吋。
兩種設(shè)計(jì)的電路面積差異主要來(lái)自輸入電感和輸出電容,單相位設(shè)計(jì)還需要第3組散熱片幫助輸出二極體散熱,交錯(cuò)式設(shè)計(jì)的二極體則是透過(guò)所連接的電路板散熱。另外,如表11所示,交錯(cuò)式設(shè)計(jì)因?yàn)槭褂幂^小的電感,所以最大高度會(huì)小于單相位設(shè)計(jì)。
設(shè)計(jì)的比較
為了比較這兩種設(shè)計(jì),我們執(zhí)行了多項(xiàng)測(cè)試,包括轉(zhuǎn)換效率、輸入和輸出漣波電壓以及暫態(tài)負(fù)載效應(yīng);我們發(fā)現(xiàn)在絕大多數(shù)情形下,雙相位設(shè)計(jì)的表現(xiàn)都勝過(guò)單相位設(shè)計(jì)。
表10是這兩種設(shè)計(jì)的效率比較,它們都能達(dá)到91%的效率目標(biāo),然而在最大負(fù)載條件下,雙相位設(shè)計(jì)的效率會(huì)高出2%,雖然這看起來(lái)并不顯眼,但若比較兩種電源供應(yīng)的熱功耗,就會(huì)發(fā)現(xiàn)其中差別很大。單相位設(shè)計(jì)會(huì)消耗23W的功率,雙相位設(shè)計(jì)只有16W,這相當(dāng)于將熱功耗減少3成,因此顯然會(huì)對(duì)散熱片的選擇以及熱功耗設(shè)計(jì)造成影響。
在表10中,效率曲線的形狀也值得注意,特別是單相位設(shè)計(jì)的效率曲線,它的最大值出現(xiàn)較早,然后就開(kāi)始快速下降,這是因?yàn)閷?dǎo)通損失劇增所產(chǎn)生的特性。兩種設(shè)計(jì)的主要區(qū)別在于電感、升壓二極體、輸出電容和電路板的功耗,表11比較了這兩種設(shè)計(jì)對(duì)于電感規(guī)格和效能的要求。如前所述,雙相位設(shè)計(jì)所需要的電感值遠(yuǎn)小于單相位設(shè)計(jì),每顆電感的電流也只有單相位設(shè)計(jì)的一半。電感的體積是由其電能儲(chǔ)存需求和溫度升幅決定,電能儲(chǔ)存需求可由1/2 × L × I2計(jì)算,從表11可以發(fā)現(xiàn)單相位設(shè)計(jì)的儲(chǔ)存電能是雙相位設(shè)計(jì)的5倍。
這表示我們?nèi)粢寖煞N電感的溫度升幅保持相同,單相位設(shè)計(jì)的電感就必須擁有5倍的體積。在這個(gè)範(fàn)例中,我們認(rèn)為與其保持同樣的能量密度,不如允許較大的溫度升幅;我們採(cǎi)用損耗較大的電感因而犧牲了單相位設(shè)計(jì)部份效率,這使得單相位設(shè)計(jì)大約多出5W的功耗。在這兩種設(shè)計(jì)的功耗差異中,約有1W來(lái)自于電容,每顆輸出電容的漣波電流約會(huì)產(chǎn)生100mW的功耗,單相位設(shè)計(jì)所需要的電容數(shù)目約比雙相位設(shè)計(jì)多出6顆。雙相位設(shè)計(jì)的功率級(jí)必須使用兩顆二極體,分別承擔(dān)總電流的一半,因此它們的電壓降較低,使得總功耗約減少1W。
表12是輸入和輸出電壓漣波的量測(cè)結(jié)果,其中左邊是單相位設(shè)計(jì)的波形,右邊則是交錯(cuò)式設(shè)計(jì)的波形。上半部是輸出漣波的電壓波形,我們可以從波形看出幾項(xiàng)重點(diǎn)。漣波電壓主要由電感電流通過(guò)輸出電容的等效串聯(lián)電阻所產(chǎn)生,右邊的波形顯示交錯(cuò)式設(shè)計(jì)會(huì)提高漣波的頻率。在左邊,由于單相位設(shè)計(jì)使用較大的電感值,所以漣波的頂端顯得相當(dāng)平坦,右邊波形的下降幅度比較大,因?yàn)殚_(kāi)關(guān)電晶體截止導(dǎo)通時(shí),電感的電流會(huì)有較大幅度的變動(dòng)。下面的波形也證明若採(cǎi)用雙相位設(shè)計(jì),輸入漣波電壓的頻率也會(huì)變得較高。
表13是兩種設(shè)計(jì)的迴路增益—雖然它并不能算是一對(duì)一的比較。單相位設(shè)計(jì)使用電壓模式控制,其缺點(diǎn)是必須補(bǔ)償兩個(gè)復(fù)數(shù)極點(diǎn)和一個(gè)右半面零點(diǎn)(right half plane zero),因此設(shè)計(jì)只能達(dá)到1 kHz的迴路頻寬。雙相位設(shè)計(jì)需要電流感測(cè)來(lái)實(shí)現(xiàn)兩個(gè)相位之間的電流平衡,所以電流模式控制的實(shí)作變得非常容易。電流模式控制的補(bǔ)償比較簡(jiǎn)單,因?yàn)樗挥幸粋€(gè)極點(diǎn)和一個(gè)右半面零點(diǎn),并能提供將近4kHz的較大頻寬。
表14是這兩種設(shè)計(jì)的時(shí)域效能,每種設(shè)計(jì)的負(fù)載都是由1~7個(gè)放大器推動(dòng),然后再量測(cè)輸出電壓。兩種設(shè)計(jì)都能達(dá)到±1%的負(fù)載穩(wěn)壓精確度,但是單相位設(shè)計(jì)的表現(xiàn)略勝一籌,因?yàn)樗褂昧溯^多的輸出電容。
縮小交錯(cuò)式升壓設(shè)計(jì)的體積 可提升效率
和降壓穩(wěn)壓器一樣,交錯(cuò)式升壓設(shè)計(jì)的效能也勝過(guò)單相位設(shè)計(jì),例如從表15即可看出,交錯(cuò)式升壓設(shè)計(jì)的體積更小,效率更高,這是因?yàn)樗軠p少輸入和輸出電容的漣波電流,使得設(shè)計(jì)的成本和熱功耗都更小;它還能減少電感的電能儲(chǔ)存要求,這表示電感磁線圈的體積、高度和熱功耗都會(huì)降低。在這個(gè)例子裡,多相位設(shè)計(jì)可以減少3成功耗,同時(shí)將熱量分散至較大的電路板面積,進(jìn)而讓設(shè)計(jì)擁有更好的熱功耗管理能力。多相位設(shè)計(jì)必須量測(cè)和平衡每個(gè)相位的電流大小,因此它確實(shí)會(huì)增加電路的復(fù)雜性,這從控制零件數(shù)目的比較就能夠看出。
評(píng)論