紅外探測器正瞄準長波長應(yīng)用
得益于來自人眼桿狀細胞方面的靈感,聚焦載流子增強傳感器實現(xiàn)了將大面積高效吸收層與納米探測機制相結(jié)合。
紅外光譜通常能提供超出人眼視覺范圍的觀察能力。紅外探測器已在許多應(yīng)用中發(fā)揮著重要作用,特別是在從不同角度觀察物體的較不明顯特征方面,紅外探測器已經(jīng)成為不可或缺的工具。人們對紅外探測技術(shù)的研究從未止步,研究人員始終在嘗試使用更多的材料來探索不同的紅外探測方法[1]。紅外探測技術(shù)方面取得的穩(wěn)步進展不斷要求更好、更靈敏的探測器來滿足應(yīng)用需求,甚至需要終極的光子傳感器——單光子探測器。
單光子探測器(SPD)是一種超低噪聲器件,增強的靈敏度使其能夠探測到光的最小能量量子——光子。單光子探測器可以對單個光子進行探測和計數(shù),在許多可獲得的信號強度僅為幾個光子能量級的新興應(yīng)用中,單光子探測器可以一展身手。利用類似于人眼桿狀細胞的光探測機理,美國西北大學(xué)和伊利諾斯州大學(xué)的研究小組已經(jīng)開發(fā)出了紅外單光子聚焦載流子增強傳感器(FOCUS)。該裝置有望在生物光子學(xué)、醫(yī)學(xué)影像、非破壞性材料檢查、國土安全與監(jiān)視、軍事視覺與導(dǎo)航、量子成像以及加密系統(tǒng)等方面取得廣泛應(yīng)用。
紅外探測的挑戰(zhàn)
紅外探測器面臨的最大挑戰(zhàn)在于創(chuàng)建一個具有足夠高信噪比的裝置。為做到這一點,探測器應(yīng)當具有以下特點:能夠有效地吸收某一特定波長的光、噪聲能量應(yīng)當?shù)陀谛盘柲芰?、能夠與具有類似低噪聲特性的讀出電子元件相耦合。對于紅外單光子探測器來講,這些要求更具挑戰(zhàn)性,因為單光子的信號能量小于1阿焦(1阿焦=10-18焦),將波長增加到長波紅外(LWIR)以及遠紅外(FIR)波段后,單個光子具有的能量會更低,這會引發(fā)更多的問題。
此外,如果要在任何波段實現(xiàn)有效吸收,必須要求吸收層(垂直于光傳輸方向)的寬度與所吸收的特定波長相當。因此,在長波紅外和遠紅外波段,器件的尺寸在幾微米到幾十微米的尺度內(nèi)。然而,要想將電子噪聲降到低于光子能量,器件的尺寸要降到納米尺度。由于單光子能量極低并且波長較長,這使得低噪聲、高效率的長波紅外單光子探測器的制作非常困難。
源自人眼桿狀細胞的靈感
隨著人們對單光子紅外探測器的不懈研究,目前已經(jīng)出現(xiàn)了專門的p-i-n探測器、雪崩光電探測器(APD)、單電子晶體管探測器以及超導(dǎo)(邊緣轉(zhuǎn)換)探測器。在這些探測器中,雪崩光電探測器是無需低溫冷卻的固態(tài)單光子探測器的首選。但是,兼容紅外的雪崩光電探測器面臨許多問題,包括由雪崩增益統(tǒng)計性質(zhì)導(dǎo)致的噪聲增長、隨機觸發(fā)的后脈沖、以及在所需的強電場下隧穿造成的暗電流的增長[2]。因此,雪崩光電探測器的應(yīng)用僅限于一些同步系統(tǒng),并且這些系統(tǒng)具有特別的猝熄電路,允許在極短的時間內(nèi)施加高擊穿電壓。
為了克服固態(tài)單光子探測器所面臨的問題,研究小組從本質(zhì)上對現(xiàn)有的單光子探測器進行了研究。由于具備一種稱為桿狀細胞的特定光敏細胞,使人眼具有探測單光子的能力[3]。桿狀細胞對弱光下的灰度視覺十分敏感,這主要是因為它們富含一種叫做視網(wǎng)膜紫質(zhì)的特殊分子[4]。桿狀細胞的結(jié)構(gòu)以及視網(wǎng)膜紫質(zhì)在細胞中的排列能夠提供龐大的吸收體積,進而能夠有效地俘獲光子。此外,視網(wǎng)膜紫質(zhì)分子與其他一系列催化劑和信使分子一起,在信號被神經(jīng)系統(tǒng)的噪聲降質(zhì)之前的放大過程中,發(fā)揮著重要作用。研究人員試圖復(fù)制這種人類視覺系統(tǒng)的工作原理,來實現(xiàn)有效的單光子探測。
FOCUS系統(tǒng)開發(fā)
盡管納米尺度特征可以提供諸如超低電容以及量子效應(yīng)等有吸引力的特性,但它們的填充因子較低,從而妨礙了其對光進行有效的吸收。FOCUS傳感器除了具有納米尺度的傳感特征外,還利用較大的吸收體積來模仿桿狀細胞的結(jié)構(gòu)進行工作(見圖1)。
圖1. 該圖為聚焦載流子增強探測器(FOCUS)裝置的掃描電子顯微成像以及橫截面圖,顯示了極為靈敏的納米注入?yún)^(qū)以及大面積的厚吸收體積
評論