博客專欄

EEPW首頁 > 博客 > 碳化硅芯片的設(shè)計(jì)和制造

碳化硅芯片的設(shè)計(jì)和制造

發(fā)布人:旺材芯片 時間:2024-06-02 來源:工程師 發(fā)布文章
首先,下圖是一張制造測試完成了的SiC MOSFET的晶圓(wafer)。

圖片圖片圖一.制造測試完成了的SiC MOSFET的晶圓
芯片表面一般是如圖二所示,由源極焊盤(Source pad),柵極焊盤(Gate Pad)開爾文源極焊盤(Kelvin Source Pad)構(gòu)成。有一些只有Gate pad,如上圖的芯片就沒有Kelvin source pad。
圖片
圖二.芯片表面
在這里我們仔細(xì)觀察芯片的周圍有一個很窄的環(huán)形,它的作用主要是提升芯片的耐壓,我們叫耐壓環(huán)(Edge termination Ring),通常是JTE結(jié)構(gòu),其實(shí)一個芯片主要就是由三部分構(gòu)成:Terminal Ring,Gate Pad,Kelvin Source Pad和開關(guān)單元(Active Cell)。芯片外圍一圈是耐壓環(huán),Gate pad把柵極信號傳遞到每一個Cell上面,然后里面是上百萬個Active Cell。
通常大家關(guān)注比較多的是Active Cell,因?yàn)樾酒拈_關(guān)和導(dǎo)通性能主要是和Active Cell有比較大的關(guān)系。在這里我們把芯片的layout還有各個部分的作用特點(diǎn)總結(jié)一下,這樣方便大家對芯片有一個更好的認(rèn)識。
耐壓環(huán)

(Edge termination Ring)

 環(huán)繞著芯片的開關(guān)單元,目前大多數(shù)采用JTE結(jié)構(gòu); 有效控制漏電流,提高SiC器件的可靠性和穩(wěn)定性; 減小電場集中效應(yīng),提高SiC器件的擊穿電壓,SiC MOSFET的擊穿電壓和具體的每一個開關(guān)單元有關(guān),同時和耐壓環(huán)也有很大的關(guān)系;● 防止離子遷移,JTE技術(shù)可以用于抑制移動離子的漂移,從而提高SiC MOSFET的可靠性和穩(wěn)定性。
其實(shí)耐壓環(huán)的最主要的作用就是提升芯片的耐壓,SiC MOSFET的耐壓和Active Cell有關(guān)系,但是芯片邊緣的場強(qiáng)很大,及其容易導(dǎo)致邊緣擊穿,所以這就是JTE的作用所在。在一些高壓的器件中,甚至JTE的面積會大于Active Cell的面積。
柵極焊盤,開爾文源極焊盤

(Gate Pad,Kelvin Source Pad )

柵極pad主要作用就一個,把柵極的信號傳輸?shù)礁鱾€開關(guān)單元,同時提一下,安森美的芯片是集成了柵極電阻的,這樣在模塊封裝上可以節(jié)省空間和一些成本。

開爾文源極主要是增加了開關(guān)速度,減小開關(guān)損耗。不過在做并聯(lián)使用的時候,就需要特別的設(shè)計(jì)來使用它。
開關(guān)單元

(Active Cell )

● 電流導(dǎo)通和關(guān)閉的路徑;● 所有的單元是并聯(lián);● 固定的單元特性下,單元的數(shù)量決定了整個芯片的導(dǎo)通電阻大小和短路電流能力; 目前主要分為平面和溝槽兩種結(jié)構(gòu)。
現(xiàn)在,我們已經(jīng)對SiC MOSFET的表面layout有了認(rèn)識,在SiC的芯片里Edge terminal和Active Cell是非常重要的兩部分,安森美在JTE的設(shè)計(jì)上具有豐富的經(jīng)驗(yàn),在SiC MOSET上已經(jīng)從M1發(fā)展到了M3,通過幾代的技術(shù)迭代發(fā)展,JTE設(shè)計(jì)仿真和制造非常的成熟。我們來總結(jié)一下JTE的一些特點(diǎn)和一些設(shè)計(jì)考慮因素。
SiC JTE(結(jié)延伸區(qū))是用于改善硅碳化物(SiC)功率器件電壓阻斷能力的結(jié)構(gòu)。SiC JTE的設(shè)計(jì)對于實(shí)現(xiàn)所需的擊穿電壓并避免因器件邊緣處高電場而導(dǎo)致的過早擊穿至關(guān)重要。
以下是SiC JTE設(shè)計(jì)的一些關(guān)鍵考慮因素:
1. JTE區(qū)域的寬度和摻雜:JTE區(qū)域的寬度和摻雜濃度確定器件邊緣處的電場分布。較寬和重?fù)絁TE區(qū)域可以減少電場并提高擊穿電壓。2. JTE的錐角和深度:JTE的錐角和深度影響電場分布和擊穿電壓。較小的錐角和較深的JTE可以減少電場并提高擊穿電壓。3. 表面鈍化表面鈍化層對于減少表面泄漏并提高擊穿電壓非常重要。需要特別為SiC JTE器件精心設(shè)計(jì)和優(yōu)化鈍化層。4. 熱設(shè)計(jì)SiC JTE器件可以在比其Si對應(yīng)物更高的溫度下工作。但是,高溫也可能降低器件性能和可靠性。因此,在SiC JTE設(shè)計(jì)過程中應(yīng)考慮熱設(shè)計(jì),如散熱和熱應(yīng)力。
總體而言,SiC JTE設(shè)計(jì)是一個復(fù)雜的過程,涉及各種設(shè)計(jì)參數(shù)之間的權(quán)衡。需要進(jìn)行仔細(xì)的優(yōu)化和仿真,以實(shí)現(xiàn)所需的器件性能和可靠性。

Active Cell開關(guān)單元 – SiC MOSFET的核心


我們可以把MOSFET(硅和碳化硅)根據(jù)它們的柵極結(jié)構(gòu)分成兩類:平面結(jié)構(gòu)溝槽結(jié)構(gòu),它們的示意圖如圖三所示。如果從結(jié)構(gòu)上來說,硅和碳化硅MOSFET是一樣的,但是從制造工藝和設(shè)計(jì)上來說,由于碳化硅材料和硅材料的特性導(dǎo)致它們要考慮的點(diǎn)大部分都不太一樣。比如SiC大量使用了干蝕刻(Dry etch),還有高溫離子注入工藝,注入的元素也不一樣。圖片圖片圖三.MOSFET的平面結(jié)構(gòu)與溝槽結(jié)構(gòu)
當(dāng)前國際上的SiC MOSFET絕大部分都采用了圖三A的平面結(jié)構(gòu),有少部分的廠家采用了圖三B的溝槽結(jié)構(gòu)。從發(fā)展的角度來看,最終都會衍生到溝槽結(jié)構(gòu)。但是目前的平面結(jié)構(gòu)的潛力還是可以繼續(xù)深挖的,而溝槽結(jié)構(gòu)也沒有表現(xiàn)出它們應(yīng)當(dāng)有的水平,在這里我們引入一個統(tǒng)一的尺度來衡量它們的性能 - Rsp(Rdson * area),標(biāo)識的是單位面積里的導(dǎo)通電阻大小。平面結(jié)構(gòu)的SiC MOSFET具有可靠性高,設(shè)計(jì)加工簡單的優(yōu)點(diǎn)。
安森美SiC MOSFET器件優(yōu)化了導(dǎo)通損耗、開通損耗、反向恢復(fù)損耗以及短路時間,使得它們在客戶應(yīng)用中達(dá)到最優(yōu)化的一個效率。
SiC MOSFET的平面結(jié)構(gòu)的Active Cell的設(shè)計(jì)制造方向主要是減小開關(guān)單元間距也就是pitch值,提升開關(guān)單元的密度,減小Rdson,提升柵極氧化層的可靠性。
如圖三A中的結(jié)構(gòu)為了盡可能的減小導(dǎo)通電阻,需要調(diào)整開關(guān)單元的間距,pitch值和Wg也就是柵極的寬度有一定的關(guān)系,pitch值變小,Wg也相應(yīng)變小,這個對于柵極的可靠性是有一定好處的,在SiC MOSFET里,柵極氧化層(Gate Oxide)非常的薄,小于100納米,因此在SiC的生產(chǎn)工藝中使用了干式蝕刻的方法來控制加工的精度。
根據(jù)圖三A中的導(dǎo)通電阻示意圖,我們可以得出Rdson = Rs + Rch + Ra + Rjfet + Rdrif + Rsub, 在這里面Rch和Ra占比最大,超過60%以上,所以它們變成了設(shè)計(jì)和工藝優(yōu)化的一個重點(diǎn)方向之一。不過也不是一味的減小開關(guān)單元柵極的寬度就可以減小Rsp,柵極的Wg寬度減小到一定范圍,反而會導(dǎo)致Rsp變大,在設(shè)計(jì)的時候需要綜合考慮以上的參數(shù)相互之間的影響,這樣才能獲得一個比較理想的優(yōu)化結(jié)果,安森美經(jīng)過幾代的工藝迭代發(fā)展,其平面結(jié)構(gòu)的SiC MOSFET上已經(jīng)在性能,良率、可靠性等方面發(fā)展得相對成熟。
在芯片里,每個active cell是并聯(lián)在一起的,圖四是一個芯片的截面圖的示意圖,在這里采用的是帶狀結(jié)構(gòu)的布局。從這里大家會對于芯片可以有更形象的了解。
圖片圖四.芯片的截面圖
以下是SiC MOSFET Rdson設(shè)計(jì)的一些關(guān)鍵考慮因素:
1. 通道寬度和摻雜SiC MOSFET的通道寬度和摻雜濃度會影響Rdson和電流密度。較寬和重?fù)降耐ǖ揽梢越档蚏dson并提高電流承載能力。2. 柵極氧化層厚度柵極氧化層的厚度影響柵極電容,進(jìn)而影響開關(guān)速度和Rdson。較薄的柵極氧化物可以提高開關(guān)速度,但也可能增加?xùn)艠O漏電流,并增加氧化層擊穿失效的風(fēng)險。3. 柵極設(shè)計(jì)柵極設(shè)計(jì)影響柵極電阻,進(jìn)而影響開關(guān)速度和Rdson。較低的柵極電阻可以提高開關(guān)速度,但也可能增加?xùn)艠O電容。
總體而言,SiC MOSFET Rdson設(shè)計(jì)是一個復(fù)雜的過程,涉及綜合考慮各個參數(shù)之間的相互影響。需要進(jìn)行仔細(xì)的優(yōu)化和仿真并且進(jìn)行試驗(yàn)和測試,以實(shí)現(xiàn)所需的器件性能和可靠性。

集成片上柵極電阻
安森美所有針對主驅(qū)逆變器開發(fā)的SiC MOSFET都集成了柵極的電阻,我們可以從圖五看到有無電阻的區(qū)別。圖五A是不需要柵極電阻(芯片上集成了),圖五B是需要額外加一個柵極電阻。
圖片圖五.有無柵極電阻的區(qū)別
集成柵極電阻會給模塊設(shè)計(jì)和制造帶來一些好處:
● 簡化了模塊綁定線的工藝,降低了失效率。● 減少了焊接電阻到DBC的工藝● 降低了BOM和制造成本● 便于封裝的相對小型化設(shè)計(jì)和制造
SiC MOSFET的設(shè)計(jì)制造工藝非常復(fù)雜,本文對其流程與一些關(guān)鍵考慮因素進(jìn)行了簡要介紹,希望能讓大家對SiC MOSFET的設(shè)計(jì)和制造有一個概念。
來源:中勝偉達(dá)


*博客內(nèi)容為網(wǎng)友個人發(fā)布,僅代表博主個人觀點(diǎn),如有侵權(quán)請聯(lián)系工作人員刪除。



關(guān)鍵詞: 碳化硅

相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉