新聞中心

EEPW首頁 > 測試測量 > 設計應用 > 基于LabVIEW和PXI平臺的并聯(lián)機器人控制系統(tǒng)的開發(fā)

基于LabVIEW和PXI平臺的并聯(lián)機器人控制系統(tǒng)的開發(fā)

作者: 時間:2011-07-25 來源:網(wǎng)絡 收藏

系統(tǒng)總體的設計
本課題所研究的并聯(lián)機器人的驅(qū)動由六個高精度的伺服電機及其驅(qū)動器承擔,每一軸上都設有前限位、后限位及原點三個開關,共18個I/O量。電機驅(qū)動需要進行以位置反解為基礎的軌跡規(guī)劃,使機器人的末端執(zhí)行器以一定的軌跡準確到達預定位置,并根據(jù)預先規(guī)劃的軌跡進行工作,因此,并聯(lián)機器人的軌跡規(guī)劃和反解運算需要一個性能強大的計算器進行計算和存儲,并且這些存儲的數(shù)據(jù)實時地傳送到作為下位機的控制卡和驅(qū)動器上,以產(chǎn)生用于驅(qū)動電機的電流或電壓??紤]到系統(tǒng)需要大量的數(shù)據(jù)傳遞、精確同步以及I/O信號種類多的特點,我們首先選擇了PXI開發(fā)平臺,這是因為PXI不僅具有業(yè)內(nèi)最高的總線帶寬和最低的傳輸延遲,而且提供從DC到6.6 GHz RF的各種模塊化的I/O。為了適應本系統(tǒng)進一步升級和后續(xù)模塊的嵌入,我們選擇了高性能的8槽機箱??刂破鲃t采用內(nèi)嵌2.2GHz Intel 奔騰4處理器的PXI-8186以滿足機器人軌跡規(guī)劃反解和數(shù)據(jù)分析的快速性。PXI-6511工業(yè)數(shù)字I/O接口板作為外圍模塊提供多達64路的隔離數(shù)字輸入。至于機器人控制系統(tǒng)的軟硬件具體設計和選型,我們將分別在下面逐一介紹??刂葡到y(tǒng)硬件之間的關系如圖1.



圖1.6-DOF系統(tǒng)的各部分之間的關系



控制系統(tǒng)硬件設計
由于本并聯(lián)機器人作為染色體切割裝備系統(tǒng)的宏動子系統(tǒng),肩負著除染色體最終切割以外的絕大部分任務,具有高的定位精度和大的工作空間要求。其基本機構(gòu)是一6-PPPS解耦的空間六自由度并聯(lián)機構(gòu),由六個高精度伺服電機驅(qū)動實現(xiàn)空間六維運動(X、Y、Z三個方向的移動和繞X、Y、Z三個方向的轉(zhuǎn)動),因為末端平臺要達到微米級精度和六個電機的協(xié)調(diào)控制,所以我們選用了NI公司性能卓越的PXI-7356多軸運動控制卡。此多軸運動控制卡的緩存斷點技術有效的提高了積分速度,對于一般的位置斷點能夠以2kHz的速率計算觸發(fā)點,對于等距分布點則能夠以高達4MHz的速率計算;此卡的兩軸PID控制周期可以達到62.5μs,8軸PID控制周期可以達到250μs,實時性遠遠高于一般試驗控制1ms的要求,如此高的計算效率適應了本系統(tǒng)的快速響應的特性。PXI-7356多軸運動控制卡的多軸同步時間小于一個采樣周期;其位置精度較高,位置反饋時位置誤差不超過正負一個正交碼盤計數(shù)(quadrature count),模擬量反饋時應用其內(nèi)置的8路16位模擬量輸入采集功能,極大的提高了模數(shù)轉(zhuǎn)換的分辨率,使其位置誤差不超過一個最低有效位(LSB),如此高的精度為系統(tǒng)高精度的要求提供了很好的保障。另外,PXI-7356多軸運動控制卡自身的安全標準、S曲線調(diào)節(jié)功能、雙PID控制環(huán)以及多軸之間的電子齒輪配合能夠為系統(tǒng)提供可靠的穩(wěn)定性。PXI-7356多軸運動控制卡及其配套的運動控制接口UMI-7774端口板具有用來控制固態(tài)繼電器和讀取數(shù)字編/譯碼器的64位數(shù)字I/O,使得系統(tǒng)中諸如18路限位、12路使能及眾多的報警等信號讀取和輸出更為方便快捷。鑒于以上考慮,我們認為NI公司的PXI-7356多軸運動控制卡及其配套模塊式適合本系統(tǒng)的要求,并選用。

控制系統(tǒng)軟件設計
控制系統(tǒng)的復雜性使得軟件設計的過程中必須進行合理有效的層面和模塊劃分。結(jié)合控制系統(tǒng)硬件和所要呈現(xiàn)的功能,本軟件劃分為應用軟件層、核心軟件層和驅(qū)動軟件層,每層根據(jù)功能要求又分為若干功能模塊。如圖2.



圖2. 軟件結(jié)構(gòu)與信息傳遞



評論


相關推薦

技術專區(qū)

關閉