新聞中心

EEPW首頁(yè) > 光電顯示 > 設(shè)計(jì)應(yīng)用 > 利用濕式蝕刻工藝提高LED光萃取效率之產(chǎn)能與良率的方法

利用濕式蝕刻工藝提高LED光萃取效率之產(chǎn)能與良率的方法

作者: 時(shí)間:2012-03-14 來(lái)源:網(wǎng)絡(luò) 收藏

近幾年來(lái)III族氮化物(III-Nitride)高亮度發(fā)光二極體(High Brightness Light EmissiON Diode; HB-)深獲廣大重視,目前廣泛應(yīng)用于交通號(hào)志、LCD背光源及各種照明使用上?;旧?,GaN 是以磊晶(Epitaxial)方式生長(zhǎng)在藍(lán)寶石基板(Sapphire SubSTrate)上,由于磊晶GaN與底部藍(lán)寶石基板的晶格常數(shù)(Lattice Constant)及熱膨脹系數(shù)(Coefficient of Thermo Expansion; CTE)相差極大,所以會(huì)產(chǎn)生高密度線(xiàn)差排(Thread DislocaTIon)達(dá)108~1010 / cm2,此種高密度線(xiàn)差排則會(huì)限制了GaN 的發(fā)光

本文引用地址:http://m.butianyuan.cn/article/168288.htm

此外,在HB-LED結(jié)構(gòu)中,除了主動(dòng)層(Active Region)及其他層會(huì)吸收光之外,另外必須注意的就是半導(dǎo)體的高折射系數(shù)(High Refractive Index),這將使得LED所產(chǎn)生的光受到局限(Trapped Light)。以圖1來(lái)進(jìn)行說(shuō)明,從主動(dòng)區(qū)所發(fā)射的光線(xiàn)在到達(dá)半導(dǎo)體與周?chē)諝庵缑鏁r(shí),如果光的入射角大于逃逸角錐(Escape Cone)之臨界角(Critical Angle;αc)時(shí),則會(huì)產(chǎn)生全內(nèi)反射(Total Internal Reflection);對(duì)于高折射系數(shù)之半導(dǎo)體而言,其臨界角都非常小,當(dāng)折射系數(shù)為3.3時(shí),其全內(nèi)反射角則只有17o,所以大部份從主動(dòng)區(qū)所發(fā)射的光線(xiàn),將被局限(Trapped)于半導(dǎo)體內(nèi)部,這種被局限的光有可能會(huì)被較厚的基板所吸收。此外,由于基板之電子與電洞對(duì),會(huì)因基板品質(zhì)不良或較低,導(dǎo)致有較大機(jī)率產(chǎn)生非輻射復(fù)回(Recombine Non-RadiativELy),進(jìn)而降低LED。所以如何從半導(dǎo)體之主動(dòng)區(qū)光源,以進(jìn)而增加光效率(Light Extraction Efficiency),乃成為各LED制造商最重要的努力目標(biāo)。

目前有兩種可增加LED光之效率:(1)第一種是在LED磊晶前,進(jìn)行藍(lán)寶石基板的圖形化(Pattern Sapphire Substrate; PSS);(2)第二種是在LED磊晶后,進(jìn)行藍(lán)寶石基板的側(cè)邊(Sapphire Sidewall Etching; SSE),以及基板背面粗糙化(Sapphire Backside Roughing; SBR)。本文將探討如何高溫磷酸濕式化學(xué)技術(shù),來(lái)達(dá)到增加LED光萃取效率之目的。此外,針對(duì)LED生產(chǎn)線(xiàn)之高與高良率需求時(shí),在系統(tǒng)設(shè)計(jì)制作上必須考慮到哪些因數(shù),亦將進(jìn)行詳細(xì)探討,以期達(dá)到增加LED光萃取效率之目的。


圖1、從主動(dòng)區(qū)所發(fā)射的光線(xiàn)在到達(dá)半導(dǎo)體與周?chē)諝庵缑鏁r(shí),如果光的入射角大于臨界角(αc)時(shí),則會(huì)產(chǎn)生全內(nèi)反射。

磊晶前藍(lán)寶石基板之蝕刻圖形化(PPS)

藍(lán)寶石基板蝕刻圖形化(PPS)可以有效增加光的萃取效率,因?yàn)榻逵苫灞砻鎺缀螆D形之變化,可以改變LED的散射機(jī)制,或?qū)⑸⑸涔鈱?dǎo)引至LED內(nèi)部,進(jìn)而由逃逸角錐中穿出。目前使用單步驟無(wú)光罩乾式蝕刻技術(shù)(Maskless Dry Etching)來(lái)加工藍(lán)寶石(Sapphire)基板,雖然可以改善內(nèi)部量子效率(Internal Quantum Efficiency)和光萃取率(Light Extraction Efficiency),然而由于藍(lán)寶石基板表面非常堅(jiān)硬,乾式蝕刻會(huì)損傷藍(lán)寶石表面,使得線(xiàn)差排(Thread Dislocation)由基板逐漸延伸到頂端的GaN磊晶層,因而影響到LED之磊晶品質(zhì),所以一般都傾向使用濕式化學(xué)蝕刻方式。有關(guān)藍(lán)寶石基板之濕式化學(xué)蝕刻圖形化,以及LED之前段流程,說(shuō)明如下:

A.首先黃光微影工藝在藍(lán)寶石基板上制作出所需的圖案。

B.電漿輔助化學(xué)氣相沉積(Plasma Enhanced Chemical Vapor Deposition; PE-CVD)系統(tǒng)在藍(lán)寶石基板上方沉積SiO2,進(jìn)行光組去除后,即可形成間隔3μm的陣列圖案。

C.利用SiO2當(dāng)作蝕刻遮罩層,在溫度280℃的高溫磷酸與硫酸混合液中蝕刻藍(lán)寶石基板,以形成圖案化結(jié)構(gòu)。圖2為使用濕式化學(xué)蝕刻藍(lán)寶石基板(PSS)后之橫截面示意圖;圖3為光學(xué)顯微鏡照片。

D.使用MO-CVD生長(zhǎng)GaN-LED于蝕刻圖案化之藍(lán)寶石基板C(0001)面上,GaN-LED結(jié)構(gòu)由下而上,包括:GaN成核層、未摻雜的GaN層、硅摻雜的N-type GaN層、MQW層及P-type GaN層。

E.使用標(biāo)準(zhǔn)微影技術(shù)及乾式蝕刻來(lái)蝕刻部份的P-type GaN層,以露出N-type GaN層,進(jìn)而定義發(fā)光區(qū)域及電極。

F.沉積ITO透明導(dǎo)電層,接著沉積Cr/Au金屬層,在200℃氮?dú)鈿夥障逻M(jìn)行合金化,以制作P電極與N電極。圖4為GaN LED之前段工藝流程圖;圖5為經(jīng)過(guò)化學(xué)濕式蝕刻圖形化藍(lán)寶石基板(PSS),接著生長(zhǎng)GaN磊晶層的LED結(jié)構(gòu)圖。

圖2、濕式化學(xué)蝕刻藍(lán)寶石基板后(PSS)之橫截面示意圖。


圖3、濕式化學(xué)蝕刻藍(lán)寶石基板后(PSS)之光學(xué)顯微鏡照片。

圖4、GaN LED前段工藝流程圖


圖5、濕式蝕刻圖形化藍(lán)寶石基板后,接著生長(zhǎng)GaN磊晶層的LED結(jié)構(gòu).

如圖6所示,經(jīng)濕式化學(xué)蝕刻圖形化之藍(lán)寶石基板,基于表面晶格特性,所以會(huì)被蝕刻出呈57o傾斜的{1-102}R面(R Plane),此種傾斜R面可以大大地增加光的萃取效率。Lee等人利用濕式蝕刻圖形化藍(lán)寶石基板制作GaN LED并*估其效能,圖7為傳統(tǒng)LED和PPS LED的電流-輸出光功率曲線(xiàn)之關(guān)系圖,在20mA操作電壓下,傳統(tǒng)LED和PPS LED的輸出功率分別為7.8和9 mW,PPS LED的輸出功率為傳統(tǒng)LED的1.15~1.3倍。此外,在20mA操作電壓下,傳統(tǒng)LED和PPS LED的外部量子效率(External Quantum Efficiency)分別為14.2%和1*%,PPS LED的外部量子效率也較傳統(tǒng)LED高1.15倍。因此PPS技術(shù)不只利用藍(lán)寶石基板的特殊幾何結(jié)構(gòu),將光導(dǎo)引至逃逸角錐(Escape Cone)進(jìn)而發(fā)射出去,以增加LED的外部量子效率外,濕式蝕刻PPS結(jié)構(gòu)也可降低Sapphire基板之差排缺陷密度,以進(jìn)而GaN的磊晶品質(zhì)[3, 4, 5].

電容式觸摸屏相關(guān)文章:電容式觸摸屏原理

上一頁(yè) 1 2 3 下一頁(yè)

評(píng)論


相關(guān)推薦

技術(shù)專(zhuān)區(qū)

關(guān)閉